
Tenth Goddard Conference on Mass Storage Systems
and Technologies
in cooperation with the

Nineteenth IEEE Symposium on Mass Storage Systems

Edited by
Benjamin Kobler, Goddard Space Flight Center, Greenbelt, Maryland
P C Hariharan, Systems Engineering and Security, Inc., Greenbelt, Maryland

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

April 2002

NASA/CP—2002–210000

Proceedings of a conference held at
The Inn and Conference Center
University of Maryland, University College
College Park, Maryland, USA
April 15–18, 2002

N
A

SA
/C

P
—

2002–210000
Tenth G

oddard C
onference on M

ass Storage System
s and Technologies

The NASA STI Program Office … in Profile

Since its founding, NASA has been dedicated to
the advancement of aeronautics and space
science. The NASA Scientific and Technical
Information (STI) Program Office plays a key
part in helping NASA maintain this important
role.

The NASA STI Program Office is operated by
Langley Research Center, the lead center for
NASA’s scientific and technical information. The
NASA STI Program Office provides access to
the NASA STI Database, the largest collection of
aeronautical and space science STI in the world.
The Program Office is also NASA’s institutional
mechanism for disseminating the results of its
research and development activities. These
results are published by NASA in the NASA STI
Report Series, which includes the following
report types:

• TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results of
NASA programs and include extensive data or
theoretical analysis. Includes compilations of
significant scientific and technical data and
information deemed to be of continuing
reference value. NASA’s counterpart of
peer-reviewed formal professional papers but
has less stringent limitations on manuscript
length and extent of graphic presentations.

• TECHNICAL MEMORANDUM. Scientific
and technical findings that are preliminary or
of specialized interest, e.g., quick release
reports, working papers, and bibliographies
that contain minimal annotation. Does not
contain extensive analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION. Collected
papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or cosponsored by NASA.

• SPECIAL PUBLICATION. Scientific, techni-
cal, or historical information from NASA
programs, projects, and mission, often con-
cerned with subjects having substantial public
interest.

• TECHNICAL TRANSLATION.
English-language translations of foreign scien-
tific and technical material pertinent to NASA’s
mission.

Specialized services that complement the STI
Program Office’s diverse offerings include creat-
ing custom thesauri, building customized data-
bases, organizing and publishing research results . . .
even providing videos.

For more information about the NASA STI Pro-
gram Office, see the following:

• Access the NASA STI Program Home Page at
http://www.sti.nasa.gov/STI-homepage.html

• E-mail your question via the Internet to
help@sti.nasa.gov

• Fax your question to the NASA Access Help
Desk at (301) 621-0134

• Telephone the NASA Access Help Desk at
(301) 621-0390

• Write to:
NASA Access Help Desk
NASA Center for AeroSpace Information
7121 Standard Drive
Hanover, MD 21076-1320

April 2002

Tenth Goddard Conference on Mass Storage Systems
and Technologies
in cooperation with the

Nineteenth IEEE Symposium on Mass Storage Systems

Edited by
Benjamin Kobler, Goddard Space Flight Center, Greenbelt, Maryland
P C Hariharan, Systems Engineering and Security, Inc., Greenbelt, Maryland

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

NASA/CP—2002–210000

Proceedings of a conference held at
The Inn and Conference Center
University of Maryland, University College
College Park, Maryland, USA
April 15–18, 2002

Available from:

NASA Center for AeroSpace Information National Technical Information Service
7121 Standard Drive 5285 Port Royal Road
Hanover, MD 21076-1320 Springfield, VA 22161
Price Code: A17 Price Code: A10

iii

Preface

This volume collects together 27 papers from the Tenth Goddard Conference on Mass Storage
Systems and Technologies being held in cooperation with the Nineteenth IEEE Symposium on Mass
Storage Systems and Technologies.

The Conference opens on the first day with tutorials on perpendicular recording in magnetic media,
IP storage, object-based storage, and storage virtualization. Over the following three days, there are
twelve sessions on various themes: Networked Storage, Hierarchical Storage Management, Storage
Indexing. Instead of a poster session, the Program Committee decided this year to have a set of
shorter papers in the plenary sessions. Time has been set aside for extemporaneous presentations to
provide an opportunity for those with a message who either did not write up a paper, or decided,
after looking at the program, that they had worthwhile ideas to share.

An invited panel on the third day will cast a look at the future of storage, and reflect also on the past.
Intense competition in the disk drive industry has led to mergers and a reduction in the number of
manufacturers. The industry, however, has managed to maintain a rate of doubling the areal density
every year at least over the last two years. Nanomagnetism and perpendicular recording are two
ways to push back the superparamagnetic limit. The tape industry has not achieved the same areal
density as their brethren in the disk industry, but a cartridge holding a terabyte of data is now more
than just a possibility.

Networked storage (NAS, SAN) is now more prevalent in data centers, and WAN based IP storage
has been demonstrated. An interoperability demonstration among different products from various
vendors is planned as part of the vendor expo.

Vendor exhibits will continue through the three days of the general sessions.

The Program Committee has worked diligently with the authors of the papers to assist the editors in
the production of this volume and we thank them for their efforts.

Ben Kobler
P C Hariharan

iv

Tenth Goddard Conference on Mass Storage Systems and Technologies

in cooperation with the

Nineteenth IEEE Symposium on Mass Storage Systems

Program Committee

Ben Kobler, NASA Goddard Space Flight Center (Program Committee Chair)
Jean-Jacques Bedet, SSAI
John Berbert, NASA Goddard Space Flight Center
Randal Burns, The Johns Hopkins University
Robert Chadduck, National Archives and Records Administration
Jack Cole, Army Research Laboratory
Bob Coyne, IBM
Jim Finlayson, Department of Defense
Gene Harano, National Center for Atmospheric Research
P C Hariharan, Systems Engineering and Security, Inc.
Jim Hughes, Storage Technology Corporation
John Jensen, National Oceanic and Atmospheric Administration
Merritt Jones, MITRE
Ethan Miller, University of California, Santa Cruz
Reagan Moore, San Diego Supercomputer Center
Matthew O’Keefe, Sistina Software
Bruce Rosen, National Institute of Standards and Technology
Tom Ruwart, Ciprico
Don Sawyer, NASA Goddard Space Flight Center
Rodney Van Meter, Nokia
Richard Watson, Lawrence Livermore National Laboratory

v

Table of Contents

Tutorials

Perpendicular Recording: A Future Technology or a Temporary Solution, Dmitri Litvinov
and Sakhrat Khizroev, Seagate Research... 1

OSD: A Tutorial on Object Storage Devices, Thomas M Ruwart, Ciprico, Inc 21

Network Storage 1

IP Storage: The Challenge Ahead, Prasenjit Sarkar andKaladhar Voruganti, IBM
Almaden Research Center ... 35

File Virtualization with DirectNFS, Anupam Bhide, Anu Engineer, Anshuman Kanetkar,
Aditya Kini, Calsoft Private Ltd, and Christos Karamanolis, Dan Muntz, Zheng Zhang,
HP Research Labs, and Gary Thunquest, HP Colorado .. 43

Building a Single Distributed File System from Many NFS Servers -or- The Poor Man’s
Cluster Server, Dan Muntz, Hewlett Packard Labs ... 59

HSM 1

High Performance RAIT, James Hughes, Charles Milligan and Jacques Debiez,
Storage Technology Corporation ... 65

Conceptual Study of Intelligent Data Archives of the Future, H K Ramapriyan, Steve Kempler,
Chris Lynnes, Gail McConaughy, Ken McDonald, Richard Kiang, NASA Goddard Space
Flight Center and Sherri Calvo, Robert Harberts and Larry Roelofs, Global Science
and Technology, Inc, and Donglian Sun, George Mason University ... 75

Storage Issues at NCSA: How to get file systems going wide and fast within and out of
large scale Linux cluster systems, Michelle Butler, National Center for Supercomputing
Applications (NCSA) .. 93

Potpourri

The Challenges of Magnetic Recording on Tape for Data Storage (The One Terabyte
Cartridge and Beyond), Richard H Dee, Storage Technology Corporation 109

Efficient RAID Disk Scheduling on Smart Disks, Tai-Sheng Chang and David H C Du,
University of Minnesota .. 121

Experimentally Evaluating In-Place Delta Reconstruction, Randal Burns, The Johns Hopkins
University, Larry Stockmeyer, IBM Almaden Research Center and Darrell D E Long,
University of California, Santa Cruz ... 137

vi

Storage Indexing

Intra-File Security for a Distributed File System, Scott A Banachowski, Zachary N J Peterson,
Ethan L Miller and Scott A Brandt, University of California, Santa Cruz 153

Efficient Storage and Management of Environmental Information, Nabil R Adam,
Vijayalakshmi Atluri and Songmei Yu, Rutgers University and Yelena Yesha, University
of Maryland Baltimore County.. 165

Indexing and selection of data items in huge data sets by constructing and accessing tag
collections, Sebastien Ponce and Pere Mato Vila, CERN and Roger D Hersch, Ecole
Polytechnique Lausanne .. 181

HSM 2

Data Placement for Tertiary Storage, Jiangtao Li and Sunil Prabhakar, Purdue University 193

Storage Resource Managers: Middleware Components for Grid Storage, Arie Shoshani,
Alex Sim, Junmin Gu, Lawrence Berkeley National Laboratory .. 209

Storage Area Networks and the High Performance Storage System, Harry Hulen and Otis Graf,
IBM Global Services, and Keith Fitzgerald and Richard W Watson, Lawrence Livermore
National Laboratory ... 225

Network Storage 2

Introducing a Flexible Data Transport Protocol for Network Storage Applications,
Patrick Beng T Khoo and Wilson Yong H Wang, Data Storage Institute, National
University of Singapore ... 241

Point-in-Time Copy: Yesterday, Today and Tomorrow, Alain Azagury, Michael E Factor
and Julian Satran, IBM Research Lab in Haifa, and William Micka, IBM Storage
Systems Group... 259

Locating Logical Volumes in Large-Scale Networks, Mallik Mahalingam,
Christos Karamanolis, Magnus Karlsson and Zhichen Xu, Hewlett Packard Labs 271

Short Papers

Building a Massive, Distributed Storage Infrastructure at Indiana University, Anurag Shankar
and Gerry Bernbom, Indiana University ... 285

High-density holographic data storage with random encoded reference beam,
Vladimir B Markov, MetroLaser, Inc .. 291

iSCSI Initiator Design and Implementation Experience, Kalman Z Meth, IBM Haifa
Research Lab ... 297

vii

Efficiently Scheduling Tape-resident Jobs, Jing Shi, Chungxiao Xing and Lizhu Zhou,
Tsinghua University... 305

The Storage Stability of Metal Particle Media: Chemical Analysis and Kinetics of Lubricant
and Binder Hydrolysis, Kazuko Hanai and Yutaka Kakuishi, Fuji Photo Film Co Ltd 311

Java and Real Time Storage Applications, Gary Mueller and Janet Borzuchowski,
Storage Technology Corporation ... 317

Vendor Paper

DIR-2000, 1 Gbit/sec Data Recorder for VERA Project, Tony Sasanuma, Sony Broadband
Solutions Network Company... 327

Index of Authors .. 331

1

Perpendicular Recording: A Future Technology or a Temporary
Solution

Dmitri Litvinov and Sakhrat Khizroev
Seagate Research

River Park Commons, Suite 550
2403 Sidney Street

Pittsburgh, PA 15203-2116
Tel: +1-412-918-7028
Fax: +1-412-918-7010

Abstract
During the vitally critical times to the future advances in data storage technologies,
perpendicular magnetic recording [1,2,3] has attracted a substantial amount of attention
as a prime alternative to the technologies in place today [4,5]. As envisioned by the
industry and academia leaders, perpendicular recording is the most likely candidate for
the technology implemented in the next generations of hard drives. The most competitive
virtue of this technology is the fact that while being technically the closest alternative to
conventional longitudinal recording, it is capable of extending the (superparamagnetic)
density limit [6] beyond what is achievable with longitudinal recording. It is widely
believed that perpendicular magnetic recording paradigm will enable to sustain the
current great strides in technological advances for the next several generations of
magnetic storage solutions.

This paper will cover the basic principles underlying perpendicular recording as well as
the challenges associated with implementing the technology [7,8,9,10].

1 Superparamagnetic limit and the need for a new technology

S N N S N SS N S NN S

Inductive
“Ring” Writer

MR Reader
Magnetizing
Coil

Write field Recording Media
Figure 1. A schematic of a conventional longitudinal recording scheme employed in

today’s hard drives.

The data on a magnetic recording medium is stored by means of recording a certain
spatial variations of the magnetization, where the magnetization variations represent the
data. The relation between the data and the magnetization pattern is defined by the
encoding scheme used. Figure 1 shows a simplified schematic of a conventional
longitudinal recording system. The recording media are engineered such that the

2

preferred direction of the magnetization, a so-called easy axis, lies in the plane of the
recording layer. Using an inductive “ring”-type writer, the magnetization of the grains is
aligned along the track in either positive or negative direction. The data is read back
using a magnetoresistive element. A change or no change in the magnetization direction
at the bit transitions corresponds to a 1 or to a 0, respectively. The lateral dimensions of a
bit, i.e. the smallest feature realized in a particular drive design, defines the areal bit
density that such a drive supports.

A conventional magnetic medium has granular structure such that each bit consists of
several magnetic grains or magnetic clusters. The magnetic clusters/grains are usually
shaped irregularly and are randomly packed, as shown in Figure 2a. Consequently, the
recording bits and bit transitions are usually not perfect, which is illustrated in Figure 2b.
These imperfections lead to noise in the playback signal. The noise is kept below a
certain acceptable level by means of including a sufficiently large number of magnetic
grains into each bit. The resulting averaging reduces the level of noise. As the areal
density increases, the bit size and the size of the grains that constitute the bit, decreases.
Typical grains in today’s media range from 5 to 15nm.

Magnetic
grains

Bit transition
(a) (b)

Figure 2. (a) A transmission electron micrograph of a typical granular medium; (b) a
schematic of a single bit transition in a granular medium.

One of the critical factors characterizing the reliability of a data storage device is data
stability. Various parameters control the stability of the data against the external factors.
With respect to the external temperature, which is manifested by thermal fluctuations in
the recording media, the magnetic anisotropy energy stored in each magnetic grain is one
of the major determinants (assuming that the grains are magnetically independent). The
magnetic anisotropy energy approximately defines the amount of energy necessary to
reverse the direction of the magnetization of a grain. For a single grain, it is equal to
KUV, where KU is the magnetic anisotropy energy per unit volume and V is the volume
of the grain. For a medium to be thermally stable, the above quantity KUV should be
substantially greater (30-40 times) than the energy of a single quantum of thermal
fluctuation, kBT, where kB is Boltzman’s constant and T is the temperature [6]. As
mentioned above, the higher areal densities require smaller grain sizes. It follows that to
sustain thermal stability, KU of a magnetic medium material should increase with the
grain size decreases. Unfortunately, as KU increases, so does the write field necessary to
efficiently write onto the medium. In conventional longitudinal recording, the upper limit
of the write field that a recording head can generate is equal to 2πMS where MS is the

3

saturation magnetization moment of the head material. The highest value of 4πMS of the
materials available today is rapidly approaching what is believed to be a fundamental
limit of ~25kGauss. This defines the upper limit of the KU values that can be employed in
a longitudinal medium and, consequently, the maximum areal density achievable with
conventional longitudinal recording. It has been predicted that with the materials
available today, the highest areal density achievable with conventional longitudinal
recording is ~100Gbit/in2 [5,6].

2 Dodging the superparamagnetic limit … The advantages of perpendicular
recording?

Several aspects native to perpendicular recording make it superior to longitudinal
recording with respect to the superparamagnetic limit. Among the advantages are higher
write-field amplitude and sharper write-field gradients, thicker recording layers, absence
of demagnetizing field at bit transitions, higher playback amplitude, etc. The specific
nature of these advantages is discussed in detail below.

2.1 Higher write field with sharper side and trailing gradients
Figure 3 shows a comparative schematic of conventional longitudinal and perpendicular
recording schemes. While in longitudinal recording, the natural direction of the
magnetization, the easy axis, lies in the plane of a recording medium, in perpendicular
recording, the easy axis is perpendicular to the plane of a medium. In longitudinal
recording, the recording is performed by the fringing fields emanating from the gap
region between the write-poles of a conventional “ring”-type recording head. It is the
geometry of a longitudinal ring-head that defines the upper limit of the write field of
2πMS, where MS is the saturation magnetization of the write-pole material. In
perpendicular recording, write field is generated between the trailing pole of a single pole
head and a soft underlayer (SUL), a soft magnetic material located below the recording
layer. In such geometry, the upper limit of the write field is equal to 4πMS, which is two
times higher than the highest field achievable with a longitudinal ring head.

SUL

Transition

 Written
 moment
 in media

Coil

“Gap” field

Record.
layer

Yoke Trailing edge

Coil Yoke

Fringing
fields

Recording
medium

Transition
Written moment
 in media

 (a) (b)

Figure 3. Diagram showing a side cross-section of (a) a typical perpendicular system
including a SPH and a double-layer medium with a SUL and (b) a longitudinal system,

including a ring-head and a single-layer recording medium.

4

Higher write efficiency of a perpendicular single-pole recording head in combination
with a SUL can ba explained in greater detail as illustrated in Figure 4. It can be shown
(the proof of this concept is beyond the scope of this paper [9]) that to evaluate the
magnetic fields above the SUL boundary, the SUL can be thought of as a perfect
magnetic mirror such that the magnetic field above the SUL boudnary is a superposition
of the fields generated by both the magnetic elements above the SUL boundary and by
their images located below the SUL boundary. This concept is illustrated in Figure 4,
where the SUL is replaced with an image recording head. From this picture it is clear that
in perpendicular recording the write process effectively occurs in the gap between the
magnetic poles, the real and the image poles, which is in contrast to longitudinal
recording where the writing is done by the frinding fields as outlined above. From simple
superposition arguments, it is straighforward to show that the in-gap field is equal to
4πMS while the highest value of the fringing field is equal to 2πMS.

“Gap” fields

Real head

Image head

Coil

SUL
boundary

Physical Gap Effective Gap

Figure 4 A schematic of the magnetic imaging principle in perpendicular recording using
a medium with a soft underlayer.

As shown above, the maximum write field available in perpendicular recording is two
times higher than the maximum write available in longitudinal recording. The direct
consequence is the ability to write onto a higher anisotropy media (higher KU). The use of
higher anisotropy media materials allows higher areal densities without compromising
the thermal stability of the recording data.

The spatial profile of the write field is also more beneficial for achieving higher areal
density in perpendicular recording. The side gradients, i.e. the rate at which the field rolls
off at the side edges of a recording head, are usually substantially sharper than what one
observes in longitudinal recording. This property leads to better-defined tracks with a
very narrow erase band. Along with better magnetic alignment of the media (see below),
extremely narrow tracks are possible to achieve.

5

0.5 um

19397

9698

Hx (Oe)

Along the track

6734

3373

Hx (Oe)

 (a) (b)

Figure 5. Longitudinal head field contours and perpendicular head field contours from (a)
a longitudinal head with a 150 nm gap and (b) a perpendicular pole head with a pole

thickness of 700 nm. The trackwidth is 50 nm in both cases.

The single pole perpendicular write heads used to acquire the experimental data presented
in this paper, were made by focused ion-beam (FIB) modification of conventional
longitudinal writers [11]. It should be emphasized that the main difference in the design
of conventional perpendicular and longitudinal writers is the length of the gap between
the magnetic write-poles. In terms of the write process, while in longitudinal recording
the writing is done near the gap region, in perpendicular recording, the writing is done by
the trailing edge of the trailing pole [12]. Figure 6 shows a state-of-the-art perpendicular
recording head manufactured by FIB trimming of a conventional longitudinal write head
by increasing the gap length and trimming the trailing pole and the reader to the specified
dimensions. Both the trailing pole and the reader are designed for a 60nm track width.

FIBed Reader

FIBed Writer

Figure 6. A single pole perpendicular write head made by focused ion-beam etching of a
conventional longitudinal ring head. The trailing pole width is 60nm.

2.2 Well aligned media
In conventional longitudinal recording, the easy axes of individual grains are randomly
oriented in the plane of a medium. (It should be recalled that the easy axis is the
energetically favorable axis/direction along which the magnetization of a grain is aligned
in the absence of external magnetic fields.) Thus, in longitudinal recording, a large
fraction of the grains forming a bit has their easy axes severely misaligned with the bit
magnetization direction. Writing well-defined bit transitions on such randomly oriented
media imposes stringent requirements onto the spatial profile of a write-field. If one
neglects the imperfections of a bit transition due to the granular nature of a medium, the
quality of the bit transition is defined mainly by the write-field profile.

6

This is drastically different from perpendicular recording, in which the easy axis of each
magnetic grain is relatively well aligned in the direction perpendicular to the plain of the
medium. Thus, in a perpendicular recording, the magnetization direction of a recorded bit
always coincides with the orientation of the easy axes of individual grains that form the
bit. Well-defined easy axis orientation relaxes the stringent requirements for the trailing
and side write-field gradients necessary to achieve sharp transitions, thus enabling the use
of thicker media [10].

The intrinsically better alignment of perpendicular media helps record narrow tracks with
well-defined transitions even into a relatively thick recording layer. A MFM image of
two adjacent tracks with a 65 nm trackpitch written into a 50 nm thick CoCr recording
layer using a 60 nm wide single pole head is shown in Figure 7 [7]. This is equivalent to a
track density of ~400ktpi. It should be stressed that the state-of-the-art in longitudinal
recording for the track density is ~100ktpi.

The possibility of using thicker recording layers further assists with improving thermal
stability.

Figure 7. A MFM image of two tracks with a 65 nm trackpitch.

With respect to using well-aligned media, it should be remembered that previously it was
shown that, although well-aligned perpendicular media might have a relatively small
average angle between the magnetization and the perpendicular recording field, the
torque created is still sufficiently large to quickly switch the magnetization [13, 14].

2.3 Absence of demagnetizing fields at bit transitions
One of the major destabilizing factors in longitudinal recording medium is strong
demagnetizing field at the bit transition. The destabilizing influence of the demagnetizing
field at the bit transitions is easy to see if one notices that the two adjacent bits of
opposing magnetization directions repel in a similar way as two bar magnets with the
poles of the same polarity, such as north-north or south-south, facing each other. The
magnets would try to flip such that the poles of opposite polarities are next to each other.
This is illustrated below in Figure 8.

7

S SNN

S

SN

N

longitudinal
perpendicular

More stable magnet
configuration

Figure 8. A schematic of the influence of demagnetizing fields in longitudinal and
perpendicular media.

The calculated demagnetizing fields for the cases of longitudinal and perpendicular
media for a single bit-transition are shown in Figure 9. In the longitudinal recording, high
demagnetizing fields at bit-transitions destabilize individual grains leading to a finite
transition width. This is opposite to perpendicular recording, in which the demagnetizing
fields reach their minima at the bit-transitions, thus promoting ultra-narrow transitions
and, consequently, high-density recording.

It can also be noticed that, unlike in longitudinal recording, the demagnetization fields in
perpendicular recording decrease as the thickness increases, thus promoting thicker
recording layers, which in turn is beneficial for the thermal stability. In this respect, it is
common to notice that although perpendicular recording promotes high densities, the
stronger influence of the demagnetization fields at lower densities is a disadvantage of
perpendicular recording.

-0.04 -0.02 0.00 0.02 0.04

-2000

-1000

0

1000

2000

H
z (

O
e)

Distance down the track (um)

 T = 10 nm
 T = 20 nm

-0.04 -0.02 0.00 0.02 0.04

-2000

-1000

0

1000

2000

H
x (

O
e)

Distance along the track (um)

 T = 10 nm
 T = 20 nm

 (a) (b)

Figure 9. The demagnetization field versus the distance down the track along the central
planes of 10 nm and 20 nm thick recording layers for (a) perpendicular and (b)

longitudinal recording media.

3 A new system component: soft underlayer challenges and design considerations
One of the key aspects of perpendicular recording that makes it superior to the
longitudinal recording with respect to superparamagnetic effects is utilization of media
with a SUL. A single-pole head and a medium with a SUL perpendicular recording
system enables write fields in excess of 80% of 4πMS of the pole head/SUL material.
This doubles the fields available in longitudinal recording, thus opening the possibility to

8

write on substantially higher anisotropy media and leading to better thermal stability.
Acting as a magnetic mirror, SUL effectively doubles the recording layer thickness,
facilitating substantially stronger readout signals. Also, the effective thickness increase
due to the mirroring effects by a SUL leads to the reduction of the demagnetizing fields
with a potential to further improve thermal stability.

While the utilization of perpendicular media with a SUL should make it possible to
postpone the superparamagnetic limit, the SUL introduces a number of technical
challenges. Some of the issues related to the presence of the SUL are discussed below.

3.1 SUL as a major source of noise
Among the technical challenges introduced by the presence of a SUL is the fact that a not
properly optimized SUL material can introduce a significant amount of noise into the
playback signal. The noise results from the stray field generated by the effective charges
resulting from domain walls in the SUL as illustrated in Figure 10.

Domain wall
(source of “magnetic charges”)

Fields from Wall (Source of Noise)

M
r

M
r

Figure 10. A schematic of the stray fields generated by a SUL

Magnetic biasing of the SUL, i.e. forcing the SUL into a single magnetic domain state,
allows to minimize the SUL noise. The biasing can be achieved either by application of
an external magnetic field or by engineering a SUL material with a built-in biasing field.
Figure 11 shows a schematic of the experimental setup to study the effect of magnetic
biasing of the SUL on the noise. The magnetic biasing was achieved using two NdFeB
permanent magnets placed in the vicinity of the media. The placement of the magnets
was such that it allowed achieving complete saturation of the SUL underneath the reader.
Special care was necessary to arrange the magnets sufficiently far from the recording
head ~2cm away in order not to affect the properties of the read element.

Soft underlayer
Hard layer

+++

+++

Magnets

head

Figure 11. A schematic of experimental setup to magnetically bias SUL film.

9

Figure 12 shows the playback signals from the two media with as deposited non-biased
(a) and magnetically biased (b) SUL’s. A substantial level of noise attributed to presence
of a large number of domain walls (confirmed by magnetic force microscopy) in the SUL
can be seen in Figure 12a. A drastic reduction of the noise (by at least 10dB) is clearly
observed in Figure 12b where the SUL is magnetically biased.

 (a) (b)

Figure 12. Playback signal from two media with different SUL’s. (a) SUL with a large
number of stripe domains. The presence of stripe domains was confirmed using magnetic
force microscopy. (b) Biased SUL with domain walls swept out from the SUL material.

The magnetic biasing saturates SUL film forcing it into a pseudo-single domain state
effectively sweeping the domain walls out of the SUL material. This results in
elimination of the SUL noise.

3.2 SUL magnetic moment
To properly design a perpendicular recording system that utilizes a medium with a SUL,
it is critical to choose an appropriate SUL material. As illustrated in Figure 13, if the
magnetic moment of a SUL material is lower than the magnetic moment of the recording
pole tip, saturation of the SUL underneath the pole tip can occur.

Pole
tip

 Soft underlayer

Saturated
region

H

Pole
tip

 Soft underlayer

H

SUL 4πMS < Head 4πMS
(saturated region under the pole tip

deteriorates gradients)

SUL 4πMS > Head 4πMS
(not saturated under the pole tip)

Figure 13. A schematic illustrating the saturation effect in the SUL is the magnetic
moment of a SUL is lower than the magnetic moment of the write pole tip.

10

The results of boundary element modeling for two different head/SUL combinations are
presented in Figure 14. It can be noticed that it is possible to generate strong recording
fields with the magnitude approaching 4πMS of the pole tip even if the SUL has a lower
magnetic moment than the pole tip. However, saturation of the SUL will lead to a
substantial deterioration of the trailing field gradients. The trailing gradients in the case of
the Permalloy based SUL are substantially worse than the trailing gradients in the case
when a FeAlN based SUL is used.

-0.5 -0.4 -0.3
0

5

10

15

H
z (

kO
e)

Distance down the track (µm)

 Permalloy
 Isat=100mA

 FeAlN
 Isat=75mA

Figure 14. Trailing fields from a single pole perpendicular write head made out of FeAlN
(4πMS =20kG) for FeAlN and Permalloy (4πMS =10kG) SUL’s.

It follows that if high moment materials are used for write heads, e.g. CoFeB, FeAlN,
etc., the moment of the SUL material should match or exceed the moment of the pole tip
material.

3.3 SUL thickness
Another important issue related to the optimized design of a SUL is the SUL thickness.
Using simple considerations of magnetic flux conservation, the minimum thickness
required for the SUL to function properly is given by

 tippole
layersoft under S

 tip poleS
layersoft under 2

1 w
M

M
t ≥ ,

where the wpole tip is the width of the write pole tip, i.e. the dimension of the write pole tip
defining the track width. The evaluation of the above equation for the case of 100Gbit/in2
areal density and 4:1 bit aspect ratio, i.e. a 160nm wide pole tip, and the same pole tip
and SUL materials, gives the lower boundary on the SUL thickness of 80nm. It should be
stressed that this thickness is substantially smaller than the minimum required thickness
often quoted in the literature of hundreds of nanometers to several microns.

This important observation needs to be strongly emphasized. Due to materials properties,
the mentioned above problem of SUL noise becomes increasingly aggravated with the
increasing thickness of the SUL.

11

3.4 SUL influence on the resolution of a perpendicular recording system
An additional challenge that the presence of a SUL imposes is potential deterioration of
the system resolution. During reading from a medium with a SUL, due to the magnetic
imaging properties of the SUL, the resolution can get distorted if the separation between
the ABS and the SUL (sum of the recording layer thickness and the flying height) is
comparable to the reader thickness.

This phenomenon is clearly illustrated in the calculated [15] PW50 and the playback
signal versus the underlayer to the ABS distance, shown in Figure 15. PW50 is the
physical width of a single transition, the measure of the spatial resolution of a recording
system. In these calculations, a fixed recording layer thickness of 10 nm was assumed,
and spacing between the bottom side of the recording layer and the underlayer was varied
from zero to some finite values. For comparison, the dotted straight lines indicate the
values for the case when there is no underlayer. It can be clearly seen that the resolution
of the modeled recording system substantially deteriorates at certain values of the ABS-
to-SUL spacing. This suggests that a special care has to be taken to properly optimize the
system’s resolution.

10 15 20 25 30

40

45

50
 PW50 (with SUL)
 PW50 (without SUL)

N
or

m
al

iz
ed

 S
ig

na
l (

ar
b.

un
its

)

ABS to underlayer distance (nm)

PW
50

 (n
m

)

0.6

0.7

0.8

0.9

1.0 Signal (with SUL)
 Signal (without SUL)

Figure 15. PW50 and the normalized playback vs. the ABS to underlayer spacing. 30 nm
GMR element and a 70 nm shield-to-shield spacing are assumed.

Although, in a properly designed system this resolution distortion can be almost
completely eliminated, it causes the resolution of a typical read head in a system with an
underlayer to be at most as good as the resolution of an equivalent head in a system
without an underlayer. It should be noted, however, the underlayer definitely increases
the playback signal, which is desirable at high areal densities.

4 Playback: new signal processing schemes

One of the drastic differences between perpendicular and longitudinal recording is the
difference in playback signals. To help understand the basic difference in the playback
process between longitudinal and perpendicular recording, schematic diagrams of the
stray fields emanating from a longitudinal medium and perpendicular media without and
with a SUL are shown in Figure 16, respectively. As can be noticed, in the longitudinal
case, the stray fields emanate only from the transitions, with the fields near the transitions
oriented perpendicular to the disk plane. On the contrary, in the perpendicular cases, the
stray field emanates from the effective magnetic “charges” at the top and effective (due to

12

a SUL) bottom surfaces of the recording layer, with the field near the transitions oriented
parallel to the disk plane.

+
+

charges in the transition

+
+

+ + + + + + + + - - - - - - - - - -

 - - - - - - - - - - + + + + + + +

Hstray

Hstray

M(a)

(b)

Figure 16. Diagrams showing the sources of stray fields in the case of (a) longitudinal
recording, and (b) perpendicular recording.

As a result of the different magnetic “charge” distributions, the playback waveform differ
drastically between longitudinal and perpendicular recording schemes. It is illustrated in
Figure 17 where typical low-density playback waveforms are shown for both
perpendicular and longitudinal recording.

Longitudinal
Playback

Perpendicular
Playback

Pl
ay

ba
ck

 S
ig

na
l

Time

Pl
ay

ba
ck

 S
ig

na
l

Time

Figure 17. Typical playback waveforms for perpendicular and longitudinal recording
schemes.

The shown above waveforms for perpendicular and longitudinal recording schemes
outline major difference between perpendicular and longitudinal recording. While in
longitudinal recording the signal is present only at bit transitions, in perpendicular
recording the signal is read not only from a bit transition but also from across the whole
bit area. It is possible to differentiate the perpendicular playback signal to make it similar
to the playback signal in longitudinal recording. However, it should be remembered that
differentiate perpendicular playback is only similar but not identical to longitudinal
playback. The difference arises in the absence of a transition when a longitudinal
playback signal is equal to zero while a differentiated perpendicular playback is, although
relatively small in amplitude, but is still finite.

13

It should be stressed that while not entirely suited to be processed by conventional
longitudinal channels, perpendicular playback clearly contain more information than
typical longitudinal waveforms, in which the signal arrives only from transitions. This
property could potentially be used to advantage in future channel designs.

5 New materials challenges
While the requirements for the head materials used in perpendicular recording are similar
to the head materials used in longitudinal recording, the major differences exist with
respect to media materials. A typical perpendicular medium consists of two magnetically
active layers: a hard layer and a SUL (See Figure 18). A hard layer in a perpendicular
medium has rather different magnetic properties from a hard layer utilized in
conventional longitudinal recording. It should also be noted that there is no analog to a
SUL in longitudinal recording. The requirements for these two layers are outlined below.

Overcoat

Hard Layer
Buffer/Spacer layer

Soft Underlayer

Substrate

Figure 18. A schematics of a typical perpendicular medium.

5.1 Hard layer materials
The primary approach to the design of a perpendicular recording layer is in many ways
similar to the design of a conventional longitudinal recording layer. All the media in use
today has granular structure, i.e. made of polycrystalline materials. Major goals inherent
to both longitudinal and perpendicular recording layer development are small grain size,
small grain size distribution, texture control, optimization of the inter-granular exchange
de-coupling, etc.

A large variety of today's perpendicular magnetic recording layer types can be clearly
divided into the two major categories: 1) Alloy based media, such as CoCr-alloys[16, 17],
and 2) media based on magnetic multilayers, such as Co/Pt, Co/Pd or others[18, 19].
Figure 19 contrasts the major difference between alloy and multilayer media. In alloy
media, the magnetic anisotropy is controlled by magnetic crystalline anisotropy. The
alloy media are usually highly textured to insure well-defined magnetic easy axis [20]. In
magnetic multilayers, the magnetic anisotropy is controlled by interfacial effects between
a magnetic layer, such as Co, and a highly polarizable spacer layer, such as Palladium or
Platinum. In contrast to alloy media, this set of materials as used in perpendicular media
usually possesses a very weak texture.

14

Single crystal grains, arrows
represent the easy axes orientations

↑ ↑ ↑ ↑ ↑↑

Co

Pd

Alloy Multilayer

Bi-layer

(a) (b)

Figure 19. A schematic representation of major microstructural differences

Material-wise, perpendicular CoCr-based alloy recording layers are similar to
conventional longitudinal CoCr-based media, with the major difference being the
orientation of the magnetic easy axis. Therefore, a significant amount of information
accumulated in the course of the longitudinal media development can be used to control
the critical parameters such as the grain size and the inter-granular exchange coupling. At
the same time, CoCr-based perpendicular media have some open issues. For example, it
is not clear yet if it is possible to make a CoCr-based medium with sufficiently high
anisotropy to avoid superparamagnetic instabilities at ultra-high areal densities. It also
has proven to be difficult to make CoCr-alloy based perpendicular recording layers with a
remanent squareness of 1. The remanent squareness is defined as a ratio between the
remanent magnetization, the value of magnetization on a M-H loop at H=0, and the
saturation magnetization, the maximum value of magnetization. It is believed that a
remanent squareness of 1 is necessary for low-density bit pattern stability. Also, a
remanent squareness of less than 1 can lead to substantial amounts of DC noise. Various
magnetic alloys such as L10 phases of FePt, CoPt, etc. are being studied as higher
anisotropy alternatives for the recording layer.

The magnetic multilayer based recording layers typically have significantly larger
anisotropy energies (Coercive fields of above 15 kOe have been reported.) and are thus
promising to be extendable to significantly higher recording densities. Another advantage
of the magnetic multilayers is the fact that typically these materials have a remanent
squareness of 1.

To compare basic magnetic properties of CoCr-alloy and mutlilayer based recording
layers, typical M-H loops by a Kerr magnetometer for a 50 nm thick perpendicular CoCr
thin-film and a 52 nm thick Co/Pd structure (a stack of 40 sets of adjacent 3 and 10
Angstrom thick layers of Co and Pd, respectively) are shown in Figure 20a and b,
respectively. It can be noticed that in addition to the remanent squareness of 1, the Co/Pd
structure exhibits nucleation fields in excess of 3kOe, a useful characteristic to avoid data
self-erasure due to stray fields. Meanwhile, the CoCr material shown in Figure 20a has a
squareness of 0.75. The CoCr and Co/Pd recording layers have coercive fields and
magnetizations of approximately 3 kOe and 9 kOe and 300 emu/cc and 200 emu/cc,
respectively.

15

-6 -4 -2 0 2 4 6

-4

-2

0

2

4

Ke
rr

Si
gn

al
 (a

.u
.)

Field (kOe)
-10 -5 0 5 10

-5

0

5

Ke
rr

Si
gn

al
 (a

.u
.)

Field (kOe)
 (a) (b)

Figure 20. An M-H loop of a 50nm thick (a) CoCr-alloy layer and (b) Co/Pd multilayer.

The direct consequence of remanent squareness less than 1 is shown in Figure 21, which
compares the spectral SNR distributions for the two media types. The CoCr medium
exhibits a significant amount of noise at lower linear densities. This is mainly due to the
fact that the dominant contribution to the noise at low linear density in the CoCr-based
medium comes from the DC noise which results from the relatively low value of
remanent squareness, as described below in more detail.

Figure 21. SNR versus the linear density for a CoCr-alloy (hollow circles) and a Co/Pd
multilayer (hollow squares).

5.2 High anisotropy SUL materials

Several design guidelines for SUL’s were discussed above including thickness
requirement and magnetic moment requirement. An additional parameter, which is
critical to achieve optimized performance of a SUL in a perpendicular recording system,
is magnetic anisotropy of the SUL material. The dynamic properties [21, 22] and
influence of a SUL on system’s resolution [23] are affected by the value of the anisotropy
field. The latter is illustrated in Figure 22, where the playback versus the linear density
(roll-off) curves are shown for identical perpendicular recording systems with different
SUL materials. The explanation of the quantum-mechanical nature of this effect is
beyond the scope of this paper. However, it should be mentioned that the deterioration of
the system’s resolution arises from inability of lower anisotropy SUL materials to
perfectly respond to spatially-fast varying magnetization patterns in the recording layer.

16

0 200 400 600 800 1000

-60

-50

-40

-30

-20

-10

0
 FeAlN (Hk ~ 15 Oe)
 Ni45Fe55 (Hk ~ 50 Oe)
 Permalloy (Hk ~ 5 Oe)

Pl
ay

ba
ck

 (d
Bm

)
Linear Density (kfci)

Figure 22. Playback roll-off curves for perpendicular recording media with identical
recording layer but different SUL’s. The extent of the roll-off curves to higher linear
densities for higher anisotropy SUL indicates the advantage of using high anisotropy

SUL materials.

6 How far perpendicular recording will take us and what will come next?
It should be emphasized that although perpendicular recording allows to surpass the
superparamagnetic limit of longitudinal recording, there exists a superparamagnetic limit
native to perpendicular recording as well. A number of factors such as the availability of
higher write fields, possibility of using thicker well-aligned media, and the absence of
demagnetizing fields at bit transitions aid in promoting thermally stable media to
substantially higher areal densities. However, it has been shown that with all factors
taken into account, the maximum areal density achievable with perpendicular recording
scheme in development today is 500-1000 Gbit/in2 [5,24,25]. Once the perpendicular
magnetic recording reaches its superparamagnetic limit, a new wave of technological
innovations will have to take place.

As mentioned in the beginning of this text, the foremost fundamental reason for the
existence of the superparamagnetic limit is the head materials constraint imposing the
limitation on the available head field that limits the utilization of higher anisotropy
media. Among the potential successors of perpendicular recording is heat-assisted
magnetic recording (HAMR) [26], in which the anisotropy of a recording medium is
temporarily reduced during the write process. In HAMR schemes, an additional element
to be incorporated in the design of a recording system is a source of heat (envisioned as
an ultra-small light source) to locally increase the temperature of the recording medium.
The increase of the medium temperature leads to the decrease of the medium coercivity
enabling the writing with relatively small magnetic fields.

Additionally, patterned media can be utilized to further extend the limits of magnetic
recording [26]. In a patterned medium, the location and the size of the magnetic features
are pre-determined by the medium manufacturing process. Elimination of the element of
randomness characteristic to today’s polycrystalline recording media is a clear advantage
of the patterned medium approach. However, for such a medium to become a serious
contender to replace conventional alloy or multilayer media, an economically viable
manufacturing process will have to be developed [27,28].

17

It should be emphasized that due to the advantageous nature of perpendicular recording
in promoting extremely high areal bit densities (high write field amplitude, well aligned
medium, sharp field gradients, absence of demagnetizing field at transitions, etc.), the
future technologies such as mentioned above HAMR and recording on a patterned
medium, are likely to be developed as extensions of perpendicular magnetic recording
schemes [26] rather than to be based on conventional longitudinal recording.

References

[1] S. Iwasaki and Y. Nakamura, ”An analysis for the magnetization mode for high
density magnetic recording,“ IEEE Trans. Magn., vol. 13, p.1272, 1977.

[2] George J. Y. Fan, “Analysis of a practical perpendicular head for digital purposes,”
JAP, Vol. 31 (5), p. 402S, 1960.

[3] W. Cain, A. Payne, M. Baldwinson, R. Hempstead, “Challenges in the practical
implementation of perpendicular magnetic recording,” IEEE Trans. Magn., Vol. 32
(1), p. 97, 1996.

[4] D.A. Thompson, “The role of perpendicular recording in the future of hard disk
storage,” J. Magn. Soc. Of Japan 21, Supplement No. S2, p. 9, 1997.

[5] N. H. Bertram and M. Williams, “SNR and density limit estimates: a comparison of
longitudinal and perpendicular recording,” IEEE Trans. Magn., vol 36(1), p. 4,
1999.

[6] S.H. Charap, “Thermal Stability of Recorded Information at High Densities,” IEEE
Trans. Magn., Vol. 33(1), p. 978, 1997.

[7] S. Khizroev, M.H. Kryder, and D. Litvinov, “Next generation perpendicular
system,” Vol. 37(4), p. 1922, 2001.

[8] D. Litvinov, M.H. Kryder, and S. Khizroev, “Recording physics of perpendicular
media: soft underlayers,” J. Magn. Magn. Mater., 232 (1-2), 84-90, 2001.

[9] S. Khizroev and Y.-K. Liu and K. Mountfield and M. H. Kryder and D. Litvinov,
“Physics of Perpendicular Recording: Write Process,” J. Magn. Magn. Mater., in
press, 2002.

[10] D. Litvinov, M.H. Kryder, and S. Khizroev, “Recording physics of perpendicular
media: hard layers,” J. Magn. Magn. Mater., in press, 2002.

[11] S.K. Khizroev and M.H. Kryder and Y. Ikeda and K. Rubin and P. Arnett and M.
Best and D.A. Thompson, “Recording heads with trackwidths suitable for
100Gbit/in2,” IEEE Trans. Magn., Vol. 35, p. 2544, 1999.

[12] D. Litvinov, J. Wolfson, J. Bain, R. Gustafson, M.H. Kryder, and S. Khizroev, “The
role of the gap in perpendicular single pole heads,” to be presented at the 1st North
American Perpendicular Magnetic Recording Conference in Coral Gables, Florida,
January 2002.

18

[13] A. Lyberatos, S. Khizroev, and D. Litvinov, “High speed coherent switching of fine
grains,” IEEE Trans. Magn., Vol. 37(4), p. 1369, 2001.

[14] A. Lyberatos, S. Khizroev, and D. Litvinov, “Thermal effects in high-speed
switching in perpendicular media,” to be presented at the 1st North American
Perpendicular Magnetic Recording Conference in Coral Gables, Florida, January
2002.

[15] S. Khizroev, J. Bain, and M.H. Kryder, “Considerations in the design of probe
heads for 100 Gbit/in2 recording density,” IEEE Trans. Magn., Vol. 33(5), p. 2893,
1997.

[16] J.K. Howard, “Effect of nucleation layers on the growth and magnetic properties of
CoCr and CoCr-X films,” J. Vac. Sci. Techn., Vol 4(6), p. 2975, 1986.

[17] B. Lu, T. Klemmer, S. Khizroev, J.K. Howard, D. Litvinov, A.G. Roy, and D.
Laughlin, “CoCrPtTa/Ti perpendicular media deposited at high sputtering rate,”
IEEE Trans. Magn., Vol. 37(4), p. 1319, 2001.

[18] T.K. Hatwar and C.F. Brucker, “Coercivity enhancement of Co/Pt superlattices
through underlayer microstructure modification,” IEEE Trans. Magn., Vol 31(6), p.
3256, 1995.

[19] D. Litvinov, T. Roscamp, T. Klemmer, M. Wu, J.K. Howard, and S. Khizroev,
“Co/Pd Multilayer Based Recording Layers for Perpendicular Media,” MRS
Proceedings, T3.9, Vol. 674, 2001.

[20] D. Litvinov, H. Gong, D. Lambeth, J.K. Howard, and S. Khizroev, “Reflection
high-energy electron diffraction based texture determination: magnetic thin films
for perpendicular media,” J. Appl. Phys., Vol. 87 (9), p. 5693, 2000.

[21] D. Litvinov, R. Chomko, J. Wolfson, E. Svedberg, J. Bain, R. White, R. Chantrell,
S. Khizroev, “Dynamics of Perpendicular Recording Heads,” IEEE Trans. Magn.,
Vol. 37(4), p. 1376, 2001.

[22] J. Wolfson, J. Bain, S. Khizroev, and D. Litvinov, “Dynamic Kerr imaging of soft
underlayers in perpendicular recording,” presented at MMM, Seattle, Washington,
November 2001.

[23] D. Litvinov, R.M. Chomko, L. Abelmann, K. Ramstock, G. Chen, S. Khizroev,
“Micromagnetics of a soft underlayer,” IEEE Trans. Magn., Vol. 36(5), p. 2483,
2000.

[24] R. Wood, “Recording Technologies for Terabit per square inch Systems,” presented
at the 1st North American Perpendicular Magnetic Recording Conference, Coral
Gables, Florida, January 2002, to be published in IEEE Transactions on Magnetics,
July 2002.

[25] M. Mallary, A. Torabi, and M. Benakli, “1Tb/in2 Perpendicular Recording
Conceptual Design,” presented at the 1st North American Perpendicular Magnetic
Recording Conference, Coral Gables, Florida, January 2002, to be published in
IEEE Transactions on Magnetics, July 2002.

19

[26] M.H. Kryder, “Perpendicular Recording - Its Window of Opportunity and What
will Replace It,” presented at the 1st North American Perpendicular Magnetic
Recording Conference, Coral Gables, Florida, January 2002.

[27] M. Albrecht, C.T. Rettner, S. anders, T. Thompson, M.E. Best, A. Moser, and B.D.
Terris, “Recording Properties of Patterned Co70Cr18Pt12 Perpendicular Media,”
presented at the 1st North American Perpendicular Magnetic Recording Conference,
Coral Gables, Florida, January 2002, to be published in IEEE Transactions on
Magnetics, July 2002.

[28] J. Moritz, S. Landis, B. Dieny, A. Lebib, Y. Chen, B. Rodmacq, M. Belin, J.
Fontaine, C. Donnet, and J.P. Nozieres, “Patterned Media Using Pre-Etched Si
Wafers Fabricated by Nano-Imprint and e-beam Lithography,” presented at the 1st
North American Perpendicular Magnetic Recording Conference, Coral Gables,
Florida, January 2002.

20

21

OSD: A Tutorial on Object Storage Devices
_

Thomas M. Ruwart
Advanced Concepts

Ciprico, Inc.
Plymouth, MN 55441

tmruwart@ciprico.com
Tel: +1-612-850-2918
Fax: +1-763-551-4002

Abstract
Ever since online digital storage devices were first introduced in the late 1950’s and early
1960’s, the various functions key to storing data on these devices have been slowly
migrating into the devices themselves. Early disk drives would send analog signals from
the read/write head to a physically separate box that would deserialize and frame data
into bytes. This data would then be sent to other processors to perform redundancy
checks and data transmission to the requesting computer system. As engineers were able
to fit more functionality into smaller spaces at reasonable costs, these key functions were
migrated into the disk drive itself to the point where we now have an entirely self-
contained unit complete with all the electronics that used to fill a small room.

However, even with the integrated advanced electronics, processors, and buffer caches,
these disk drives are still relatively “dumb” devices. They essentially perform only two
functions: read data and write data. Furthermore, the disk drives do not know anything
about the data that they are storing. Things such as content, structure, relationships,
quality of service, …etc. are all pieces of information that are external to the disk drive
itself. The basic premise of Object Storage Devices is that the disk drive or, more
generically, the storage device, can be a far more useful device if it had more information
about the data it manages and was able to act on it.

This paper is intended to provide the reader with an overview of OSD, its history, its
current state, and possible futures. It begins by presenting a brief history of Object
Storage Devices and then discusses why OSD is an important step in the evolution of
storage technologies in general. The basic OSD architecture is compared with current
Direct Attached Storage (DAS), Storage Area Network (SAN), and Network Attached
Storage (NAS) architectures in terms of management, device and data sharing,
performance, scalability, and device functionality. Finally, the current status of OSD and
related roadmaps are presented as a frame of reference.

Brief History of OSD
The most active work on OSD has been done at the Parallel Data Lab at Carnegie Mellon
University (www.pdl.cmu.edu) originally under the direction of Garth Gibson [1,4,5,6,8].
This work focused on developing the underlying concepts of OSD and two closely
related areas called Network Attached Secure Disks (NASD) and Active Disks. Other
work has been done at the University of California at Berkeley [Keeton], the Universities
of California Santa Barbara and Maryland [3], as well as Hewlett Packard Labs [7,9],

22

Seagate Technology, and Intel Labs. Topics covered by these early pioneers can be
broken down into two main categories: OSD architecture and applied OSD concepts. The
basic OSD architecture defined to date specifies a set of object functions that can be
implemented over any transport (TCP/IP, SCSI, VI, …etc.) but the initial transport will
be SCSI for the sake of ubiquity.

Motivation behind OSD
As disk drives and other types of storage devices become denser and more numerous the
block-level methods used to access and manage them are reaching the limits of their
scalability. OSD is a protocol that defines higher-level methods of communicating the
creation, writing, reading, and deleting of data objects as well as other related functions
for getting and setting object attributes. OSD is a level higher than a block-level access
method but one level below a file-level access method. OSD is not intended to replace
either block-level or file-level access methods but rather to add a needed layer of
abstraction that sits between them. It is a technology intended to help make existing and
future data storage protocols more effective in several areas that include:

• Storage Management
• Security
• Device and Data Sharing
• Storage Performance
• Scalability
• Device Functionality

These areas are becoming more critical to the success of storage users as well as the
storage vendors who are increasingly concerned over ways to differentiate their products.
It is quite possible that the OSD architecture will provide both the users and vendors with
a highly flexible base on which to build new storage systems that can accommodate each
of these areas more effectively than trying to extend the current block-based or file-based
protocols.

DAS/SAN/NAS Basic Architectures
There are three basic storage architectures commonly in use today. These are Direct
Attach Storage (DAS), Storage Area Networks (SAN), and Network Attached Storage
(NAS). Each of these is used to solve problems specific to a particular application or
installation. Each has its strengths and weaknesses.

 DAS SAN NAS
Storage Management High/low High Medium
Security High Medium Low
Device and Data Sharing Low Medium High
Storage Performance High High Low
Scalability Low Medium Medium
Device Functionality Low Low Medium

Table 1. Capability assessment based on Technology

23

The DAS/SAN/NAS architectures and how they scale from a single subsystem to
multiple systems are described in diagrams 1-3. Diagrams 4 and 5 show the basic
architecture for OSD and the scaling thereof.

Storage Device

Application

File System

Direct Attached Storage
Block-based access to

dedicated storage

Storage Device

Application

File System

Storage Device

Application

File System

Storage Device

Application

File System

Storage Device

Application

File System

Storage Device

Application

File System

Scales to

Many individual systems and
Applications with Block-based

access to dedicated storage
Diagram 1. A single DAS scaling to multiple DAS systems. Each DAS system
could conceivably add more storage devices but this is intended to show that
when the limit of storage device connectivity is reached on a DAS system, the
DAS system must be replicated.

Storage Device

File System

Storage Device

Application

File System

Network Attached Storage
Shared File-Based access to

dedicated storage

LAN

Storage Device

Application

File System

Many individual systems and applications with Shared
File-Based access through the LAN to dedicated storage

LAN

Scales to Application
Application

Application

Storage Device

File System

Diagram 2. A single NAS scaling to multiple NAS and multiple application
(clients). Note that the NAS boxes themselves can increase in capacity and that
they scale in number independently from the application systems (clients).

24

Storage Device

Storage Area Network
Block-Based access to

shared storage

SAN

Application

File System

Storage Device

Many individual systems and applications
with Block-Based access to shared storage

Application

File SystemScales to
Application

File System

Application

File System

Storage Device

Storage Device

SAN

Diagram 3. A single SAN scaling to a larger SAN. Note that the storage devices
and application (client) systems scale independently. There is implied device
sharing and data sharing in this diagram.

OSD Intelligence

Storage Device

Application

File Manager

Object Manager
Data Transfer

Meta Operations

Secu
rit

yLAN/SAN

Diagram 4. A basic OSD architecture. Unlike DAS/SAN/NAS the Object
Manager is a separate entity from the OSD and the application system (client).
The transport for OSD can be either a LAN or a SAN.

25

Application

File Manager

Application

File Manager

Application

File Manager

Application

File Manager

OSD Intelligence

Storage Device

OSD Intelligence

Storage Device

Object Manager

Data Transfer

Meta Operations

LAN/SAN

Object Manager
Object Manager

Object Manager
Object Manager

OSD Intelligence

Storage Device

OSD Intelligence

Storage Device

Secu
rit

y

Diagram 5. Scaling a basic OSD architecture allows for increasing the number
of OSD indefinitely as well as the application systems (clients). The Object
manager can scale from a single system into a fully distributed cluster to
accommodate the OSD and application system scaling. The transport for all
these components can be either a LAN or SAN.

Basic OSD Architecture
One of the many motivations behind OSD was to take the strengths of each of the
DAS/SAN/NAS architectures and incorporate them into a single framework. The basic
OSD architecture and its scalability are shown in diagrams 4 and 5. There are many
similarities between and OSD architecture and the DAS/SAN/NAS architectures. These
include the use of Fibre Channel, Ethernet, TCP/IP, and SCSI protocols as transports and
protocols. There are also several significant differences between OSD and the
DAS/SAN/NAS architectures. These differences include the use of the following logical
components:

• Object Manager
• OSD Intelligence
• File Manager

The Object Manager is used as a global resource to find the location of objects, mitigate
secure access to these objects, and to assist in basic OSD management functions. This can
be a single OSD that assumes these functions or it can be a completely separate, fully
redundant cluster of systems. An Object Management Cluster would allow for scalability

26

in the number of objects that can be managed as well as the access performance of the
Object Manager itself. It is important to note that the Object manager does not contain
any user data or object meta-data nor does any of the data during a data transfer operation
move through the Object Manager. The Object Manager is strictly used to facilitate
location and secure access of objects.

The OSD Intelligence is the software (firmware) that runs on the storage device. It is
responsible for interpreting the various OSD methods (commands): Create Object, Delete
Object, Read Object, Write Object, and Get/Set Attributes. Furthermore, the OSD
Intelligence can also provide the following capabilities:

• Object attribute interpretation
o Object structure and relationship awareness
o Object content awareness
o Quality of Service (QoS)
o Access Patterns
o Security

• Sense of time
• Awareness and ability to communicate with other OSDs
• Device and data management

The OSD intelligence facilitates the communication of the OSD to the Object Manager
for security purposes but mainly manages data processing and transfers between itself
and the File Manager on the client requesting the data transfer. Since the OSD now has
the intelligence to perform basic data management functions (such as space allocation,
free space management, …etc.) those functions can be moved from the File SYSTEM
manager to the OSD. The File SYSTEM manager now becomes simply a File Manager:
an abstraction layer between the user application and the OSD. The File Manager
provides backward compatible API for legacy codes to access files on OSD and, more
importantly, it provides the security mechanisms required to ensure data privacy and
integrity. More advanced capabilities of OSD can be exposed through the File Manager
for user and system programs that wish to use them.

DAS/SAN/NAS/OSD Comparison
There are not actually any “new” data management functions in the OSD model. Rather it
is simply a rearrangement of the existing functions in a general sense. From the user
application point of view, the application creates, reads, writes, and deletes files as it
always has. It does not know where the data is stored nor should it care. It does have
certain data requirements (storage management, security, reliability, availability,
performance, …etc.) that must be met and OSD provides a mechanism to specify and
meet these requirements far more effectively than DAS/SAN/NAS. The following
sections compare and contrast DAS/SAN/NAS to OSD in terms of the requirements
listed in Table 1.

27

Storage Management1
Current estimates show that the cost of managing storage resources is about seven times
the cost of the actual hardware over the operational life of the storage subsystems. This is
independent of the type of storage (i.e. DAS/SAN/NAS). Given the tremendous growth
in storage systems, storage resource management has been identified as the single most
important problem to address in the coming decade. The DAS and SAN architectures rely
on external storage resource management that is not always entirely effective and is in
now way any kind of a standard. The NAS model has some management built into it but
it too suffers from a lack of standards. The OSD management model relies on self-
managed, policy driven storage devices that can be centrally managed and locally
administered. What this means is that the high-level management functions can come
from a central location and the execution of the management functions (i.e. backup,
restore, mirror, …etc.) can be carried out locally by each of the OSDs and on an OSD
peer-to-peer basis (i.e. a disk OSD backing itself up to a tape library OSD).

The DAS architecture is very simple to manage if there is only one system involved with
some number of storage devices attached to it. All the management functions can be done
from the one system that these devices are attached. However, if there is more than one
system with storage devices attached, then it becomes increasingly difficult to manage all
the storage devices because the management is distributed among all the systems that the
storage devices are attached to. There is no central point of management in this case.

This problem is solved to some extent in a SAN configuration because ideally any one of
the systems has access to all of the storage devices and management can be centralized
on any one of these systems. A similar argument can be made for NAS devices since the
network is a LAN and presumably any system on the LAN can see all of the NAS
devices and hence can manage them all from a single system. Furthermore, the NAS
devices have more “intelligence” built into them by their very nature (i.e. there is an OS
with a file system, a communications stack, …etc.). This extra intelligence lends itself to
the idea of self-managed storage making the overall task of managing storage resources
somewhat easier. But is there a limit to the size of a system or the granularity of
performance that can be managed in the NAS architecture?

The point here is that centralized management of storage resources (devices, space,
performance, …etc.) with distributed administrative capabilities (i.e. the ability to carry
out management functions locally) is essential to future storage architectures. In order to
achieve this, the OSD architecture is designed to be self-managed thus more fully
utilizing the OSD Intelligence built into each OSD. The devices will know how to
manage each of several resources individually or through an aggregation of OSDs. These
resources include (but not limited to):

• Space they have available at any given time
• Bandwidth has been requested
• Latency requirements of outstanding sessions

1 In this section, the term “management” refers to the ability to install, configure, monitor, and administer
the physical and logical storage devices as well as the space on these devices.

28

• The number of operations it is capable of performing in a given amount of time

Finally, OSD defines the concept of “object aggregation” whereby a hierarchy of OSDs
can be made to appear as a single larger OSD. The resource management of this large
aggregated OSD is done either through a single OSD at the top of the aggregation or can
be done to each of the individual OSD devices in order to achieve maximum resource
management flexibility.

Security
Security is second only to management in importance with respect to a data storage
system. There are two basic threats that a secure system must guard against: External and
Internal threats. External threats are attacks that come from outside the data storage
system and outside the machines that are allowed access to the data on the storage
subsystem. Internal threats are either benign or intentional. Benign threats are accidental
access, modification, or corruption of data on a storage system. Intentional threats are
intended to cause problems. In any case, multiple levels of security are necessary to
authenticate, authorize access, ensure data integrity, and enforce data privacy.

Data security is becoming increasingly complex as the deployed systems and associated
data storage systems grow in number and complexity. On the complexity scale, a DAS
system is only as secure as the system that it is connected to. Assuming that the system is
100% secure, then access to the DAS device is very restricted.

By putting storage devices on a SAN however, there are more opportunities for access to
the storage devices through other hosts that share the SAN. Generally, SANs are isolated
and connected only to “trusted” host systems but there are still many other opportunities
to connect to a SAN (i.e. through unused ports on a switch) and breach security. Since the
SAN storage devices themselves do not have any notion of restricted access it is up to the
host systems and SAN network infrastructure to enforce secure access to the storage
devices.
NAS devices also have only as much security as the networks they are on and the
firewalls and other security measures they implement. Because NAS devices tend to be
on LANs the access restrictions may not be as stringent as those on SANs. However,
since the NAS devices have some intelligence, they can implement more effect security
measures than SAN devices.

The OSD concept incorporates a security model that includes four security levels:

• Authentication – you are who you say you are
• Authorization – you have permission to access to an object
• Data integrity – data is not modified or corrupted
• Data privacy – data is not to be seen by anyone else

The authentication is performed by the OSD transport layer. For example, for OSD over
iSCSI over Ethernet, IPSEC would perform authentication. The remaining three levels
are performed by the OSD itself. The authorization security mechanism is capability-
based whereby the OSD manager gives capabilities to the clients and the clients present

29

these capabilities to the OSD. Finally, data integrity and data privacy are achieved
through the use of cryptography. These are all features that make OSD security different
from NAS security and certainly better than DAS and SAN security.

Device and Data Sharing
Concurrent device and data sharing is nonexistent on DAS systems unless the data is
exported through an NFS or CIFS share to other systems. At that point the system
essentially becomes a NAS device. Again, a SAN partially solves the problem by
allowing any system connected to the SAN to access any device connected to the SAN.
This is ideal for device sharing because the SAN provides a very high performance
connection between any system and any device on the SAN. However, the problem of
data sharing is left to the file systems to figure out. There are several ways to solve the
problem of data sharing on a SAN, each with its own strengths and weaknesses. It is
beyond the scope of this paper to describe these other than to say that data sharing is not
always optimal on a SAN particularly in heterogeneous system environments (i.e.
NT/Windows versus UNIX-based systems).

NAS devices are very good at sharing data even in heterogeneous system environments.
The problem that NAS devices run into in this area is performance. There is a significant
amount of overhead involved in performing each data transfer between the requesting
system and the storage device where the bits reside. Furthermore, the store-and-forward
model used by virtually all NAS devices can become a problem if not used correctly.

In the OSD model, the protocol is system agnostic and therefore system heterogeneous by
nature. Since the OSD is the storage device and the underlying protocol is supported on
either a SAN (SCSI) or a LAN (iSCSI), device sharing becomes simple. Data sharing is
accomplished as a result of this as well. The objects contained on an OSD are available to
any system that has permission to access them. It is interpretation of the object that needs
to be common among the systems that becomes important for effective data sharing. That
interpretation is outside the scope of OSD but the ability to access the object is there.

Storage Performance
Performance requirements differ from application to application but they come down to
three basic components that can be described as:

• Bandwidth – the number of bytes per second that can be transferred between the
requesting system and the storage device

• Latency – the time from the receipt of a request until the first byte of data is
received

• Transactions rate – how many transactions of a particular size can be processed
each second

The performance of DAS can be managed fairly closely because there is only one system
talking to the device at any given time. This system can therefore reorder the request
queue to a DAS device to minimize latency, manage available bandwidth, and maximize
the number of transactions per second.

30

Similarly, on a SAN, any given system is presumably one of many accessing a storage
device at any given time. On an individual basis, any given system can realize the same
performance as a DAS provided no other systems are using the target storage device or
any other required resources (hubs, switch ports, …etc.). The device-sharing capability
of SAN however, makes the task of managing the storage performance exceedingly
difficult. This is because the storage devices cannot differentiate between access requests
and thus cannot give preferential treatment to any single request or set of related requests.
Therefore, the bandwidth, latency, and transaction rates are not manageable on a SAN
without some knowledge of the requesting system or the data being accessed. Neither of
these pieces of information is available to the device in a standard SAN configuration.

A NAS device can address some of these issues since it can know something about the
files being accessed and the host requesting access. The practice of file “tagging” is used
to identify certain performance characteristics of files when they are accessed. For
example, if a high-definition video file is being read from a NAS device, it could know
that is must transfer this file using 80MB/sec of 120MB/sec of available bandwidth on a
specific network connection leaving the remaining 40MB/sec to transfer other files
through that same network interface. This preferential treatment of requests has the effect
of providing guaranteed bandwidth, latency, and/or transactions per second. But again,
the tremendous overhead of NAS makes it difficult to compete with either DAS or SAN
for raw performance in these three categories.

The OSD model is very performance conscious. It is designed to allow performance
characteristics of objects to be an attribute of the object itself and independent of the
OSD where it resides. If the high-definition video file given in the previous example were
on an OSD, it would have an attribute that specified an 80MB/sec delivery rate as well as
a certain quality of service (i.e. a consistent 80 MB/sec). Similarly, there could be
different attributes for the same object that describe delivery performance for editing
rather than playback. In editing-mode, the OSD may have to skip around to many
different frames thus changing the way the OSD does caching and read-ahead. Similarly,
for latency and transaction rates, an OSD can manage these more effectively than DAS
and SAN because it has implicit and explicit knowledge of the objects it is managing.
The NAS concept of “file-tagging” is generalized and extended in the OSD model to
accommodate current applications as well as future unforeseen application performance
and functionality requirements.

Scalability
The term scalability means many different things. Hence another term, extensibility will
be used in this section to expand upon the term scalability. Many of the items listed under
the heading of “extensibility” can be accomplished by NAS devices. It is a question of
the degree at which a storage device is extensible that is important. The OSD model is a
single open model, not a specific proprietary implementation that is intended to provide
the fundamental architecture that can extend far into each of the extensibility dimensions
yielding years of opportunity and growth of storage systems built on the OSD model.]

31

This is only a partial list of extensibility dimensions but it demonstrates the breadth of
characteristics that the OSD model encompasses:

• Density – the number of bytes/IOPS/bandwidth per unit volume. OSD on
individual storage devices can optimize these densities by abstracting the physical
characteristics of the underlying storage medium and hardware to objects.

• Scalability – what does that word really mean?
o Capacity: number of bytes, number of objects, number of files, …etc.

OSD aggregation techniques will allow for hierarchical representations of
more complex objects that consist of larger numbers of smaller objects.

o Performance: Bandwidth, Transaction rate, Latency. OSD performance
management can be used in conjunction with OSD aggregation techniques
to more effectively scale each of these three performance metrics and
maintain required QoS levels on a per-object basis.

o Connectivity: number of disks, hosts, arrays, …etc. Since the OSD model
requires self-managed devices and is transport agnostic the number of
OSDs and hosts can grow to the size limits of the transport network.

o Geographic: LAN, SAN, WAN, …etc. Again, since the OSD model is
transport agnostic and since there is a security model built into the OSD
architecture, the geographic scalability is not bounded.

o Processing Power – Given that the OSD model promotes the development
of Active Storage Device technology it is reasonable to consider scaling
the processing power on an OSD to meet the requirements of the functions
the Active Disk is expected to perform.

• Cost – address issues such as $/MB, $/sqft, $/IOP, $/MB/sec, TCO, …etc.
• Adaptability – to changing applications. Can the OSD be repurposed to different

uses such as from a film editing station to mail serving?
• Capability – can add functionality for different applications. Can additional

functionality be added to an OSD to increase its usefulness?
• Manageability – Can be managed as a system rather than just a box of storage

devices – Aggregated OSD management? Hierarchical Storage management?
• Reliability – Connection integrity capabilities
• Availability – Fail-over capabilities between cooperating OSD devices. Can this

scale from 2-way failover to N-way failover?
• Serviceability – Remote monitoring, remote servicing, hot-plug capability,

genocidal sparing. When an OSD dies and a new one is put in it’s place, how does
it get “rebuilt”? How automated is the service process?

• Interoperability – Supported by many OS vendors, file system vendors, storage
vendors, middleware vendors.

• Power – decrease the power per unit volume by relying on the policy-driven self
management schemes to “power down” objects (i.e. move them to disks and spin
those disks down).

The DAS and SAN devices run into significant problems with extending into many of
these dimensions. Even though these systems are built from many of the same physical
devices, it is the efficiency with which they can be used that is a true differentiator
between DAS/SAN and NAS/OSD. As was previously mentioned in the Storage

32

Performance section, DAS/SAN devices have very good performance but cannot manage
that performance effectively or efficiently. A NAS system has the potential to manage
performance but suffers from other performance-related issues due to the file-level access
protocols (NFS/CIFS) used with NAS subsystems. Many of these extensibility
dimensions are “afterthoughts” and were never designed into the NAS model from the
beginning.

On the other hand, it is these extensibility features that the OSD architecture is designed
to exploit to allow vendors to build more application-specific storage-centric systems
thereby allowing storage vendors to more easily differentiate their products to address
application requirements. The OSD architecture was designed with extensibility in mind
rather than as an afterthought.

How OSD Relates to File Systems – An example in Scalability
Current file system technologies that access disk drives directly are “block-based” in
nature. These file systems are responsible for the management of all available disk blocks
on the disk storage devices they manage. Hence, the “file system manager” is the
program that runs on a computer system that manages all the data structures on a disk
storage device that make up a “file system”. The file system manager will perform file
creation, data block allocation, tracking of which files occupy which data blocks, control
of access to these files, file deletion, and management the list of free or unused data
blocks. In performing these functions the file system manager examines and manipulates
on-disk data structures such as information nodes (inodes) and directory trees.

The file system manager manages two basic types of data: “meta-data” and “user data”.
Meta-data constitutes the file system structure that ultimately contains the user data files.
Therefore, the file system manager has the ability to understand the “structure” of the
“file system” but not the contents of the user data contained in the file system. Also,
from the point of view of the file system manager, a disk storage device is simply a
sequential set of disk blocks where a disk block is typically 512 bytes. All the meta-data
and user data is mapped into this sequential set of blocks. From the point of view of the
storage device, it only knows how to access 512-byte blocks. The storage device has no
concept of the structure of these blocks as it relates to the file system or the data
contained within the blocks.

The problem with the model of a “block-based” file system is that it can be severely
limited in scale. As the number of blocks in the file system grows the task of managing
the location of all the files and associated user data blocks grows as well. In 2001 the
180GB disk drive was shipped that contained 360,000,000 disk blocks. Three of these
disk drives would constitute over one billion blocks to manage. A terabyte-sized file
system would be made up of two billion blocks and a 10-terabyte file system, which is
not uncommon these days, would be 20 billion disk blocks.

The OSD model would move the management of these individual blocks to the devices
themselves. The file system manager would then only need to manage objects – a far
more manageable problem. The fact that a disk device has blocks is completely hidden

33

from anything outside the disk drive itself. In fact, it does not even have to be a “disk”
drive. It could be a solid-state device, a MEMS device, or a quantum crystal device. It no
longer matters to the file system manager as long as the device can store and retrieve
“objects”. Now the file system manager only needs to worry about managing 500,000
objects and the fact that they take up the equivalent of 30 trillion 512-byte blocks is no
longer directly relevant.

Functionality
DAS and SAN devices do two things and only two things: they write data and the read
data. This is the limit of their functionality. NAS devices can perform more complex
tasks such as snapshot backups, hierarchical storage management, data replication, …etc.
because the NAS devices know certain attributes of the files they manage. However,
most NAS device protocols still lack the extensibility to know and more effectively act
upon the data they store.

The OSD model extends beyond the simple attributes of a file and allows for application-
specific attributes that can specify relationships to other objects to form structures or
functional attributes that can instruct the OSD to perform some operation (i.e.
compression, encryption, …etc) on an object. The OSD model is intended to be used with
the concept of Active Disks [Acharya] or Active Storage Devices. These devices can
have significantly greater functionality than a simple DAS/SAN/NAS device because
they can implicitly or explicitly act on the data they store.

It is this concept of Active Storage Devices that makes OSD so compelling for users and
storage vendors. The reason for this is simple: users need to spend more time working on
and with their data than trying to figure out how to manage it. Storage vendors need to
have some way to significantly differentiate their storage products in an increasingly
commoditized storage market. OSD provides and extensible mechanism to facilitate the
incorporation of unique functionality storage devices thereby differentiating them from
other storage products based on their capabilities not simply bandwidth, transaction rate,
or capacity. Furthermore, since these storage devices are intelligent, they can be self-
managed, autonomous “appliances” that are tailored to meet the requirements
(processing, performance, reliability, …etc.) of specific applications.

OSD Roadmap
The concept of OSD has been around and in development for the past 10 years. Much of
this work was pioneered by Garth Gibson and his research team at the Parallel Data Lab
at CMU funded in part by Seagate. Recently however, an OSD Technical Working group
has been formed as part of the Storage Networking Industry Association (SNIA –
www.snia.org). The charter of this group is to work on issues related to the OSD
command subset of the SCSI command set and to enable the construction, demonstration,
and evaluation of OSD prototypes over the next several years. The command
specification is to a point where working prototypes have been demonstrated by
companies such as Seagate and Intel but no production or enterprise-level products have
resulted from these prototypes yet.

34

Summary
OSD is an enabling technology for the development of active storage devices. By
allowing the storage devices to understand, interpret, and act upon the data they store,
new classes of storage-centric devices can be brought to market that enhance customer
workflows while reducing total cost of ownership. OSD can also allow for more highly
differentiated storage products based on capabilities rather than simple capacity, or raw
performance thereby enhancing a storage vendor’s ability to serve their respective
markets.

References

[1] E. Riedel, G. Gibson, and C. Faloutsos, “Active Storage for Large-Scale Data
Mining and Multimedia”, Proceedings of the 24th International Conference on
Very Large Databases (VLDB’98), August 1998

[2] K. Keeton, D. A. Patterson, J.. M. Hellerstein, “A case for Intelligent Disks
(IDISKs)”, SIGMOD, August 1998

[3] A. Acharya, M. Uysal, and J. Saltz, “Active Disks”, ASPLOS, October 1998
[4] E. Riedel, G. Gibson, C. Faloutsos, G. Granger, D. Nagle, “Data Mining on an

OLTP System (Nearly) for Free”, SIGMOD, May 2000
[5] H. Gobioff, G. Gibson, and D. Tygar, “Security for Network Attached Storage

Devices”, White Paper CMU-CS-97-185, October 1997
[6] G. Gibson et al, “Filesystems for Network-Attached Secure Disks”, White Paper

CMU-CS-97-118, July 1997
[7] E. Borowsky et al, “Using Attribute-managed Storage to Achieve QoS”, Hewlett-

Packard Laboratories White Paper
[8] G. Gibson et al, “File Server Scaling weith Network-Attached Secure Disks”,

SIGMETRICS ’97, June 1997
[9] E. Riedel (HP), G. Gibson, and C. Faloutsos, D. Nagle (CMU), Active Disks for

Large-Scale Data Processing”, IEEE Computer, June 2001

35

IP Storage: The Challenge Ahead
_

Prasenjit Sarkar, Kaladhar Voruganti
IBM Almaden Research Center

San Jose, CA 95120
{psarkar,kaladhar}@almaden.ibm.com

tel +1-408-927-1417
fax +1-408-927-3497

Abstract
Advanced networking technology has led to the genesis of the storage area network
model, where host servers can access storage as a service from various devices connected
to the network. While the initial approach to storage area networks has involved
specialized networking technology, the emergence of Gigabit Ethernet technology has
raised the question of whether we can use commodity IP networks for storage. This paper
examines the issues involving IP storage networks and presents a performance analysis to
dispel some of the myths and outline some of the challenges.

1 Introduction
With the steady increase in the storage needs of most organizations, block storage
management is becoming an important storage management problem. Application
servers, databases and file systems ultimately rely on the presence of an efficient and
scalable block storage management system.

In the past, the storage model assumed the presence of storage attached to every host
server. This type of host server-attached storage relied on the Small Computer System
Interface (SCSI) protocol. The SCSI protocol emerged as the predominant one inside host
servers due to its clean, well-standardized message-based interface. Moreover, in later
years, it supported command queuing at the storage devices and allowed for overlapping
commands. In particular, since the storage was local to the server, the preferred SCSI
transport used was Parallel SCSI where multiple storage devices were connected to the
host server using cable-based bus. However, as the need for storage and servers grew, the
limitations of this technology became obvious. First, the use of parallel cables limits the
number of storage devices and the distance of the storage devices from the host server.
The limits imply that adding storage devices might mean the need to purchase a host
server for attaching the storage. Second, the concept of attaching storage to every host
server means that the storage had to be managed on a per-host server basis, a costly
implication for centers with a large number of host servers. Finally, the technology does
not allow for an easy sharing of storage between host servers, nor typically does the
technology allow for easy addition or removal of storage without host server downtime.

The lack of scalability and manageability of the host server-attached storage model led to
the evolution of the concept of a storage area network. Storage devices are assumed to be
independent machines that provide storage service via a network to a multitude of host
servers. The attraction of this approach is that host servers can share a pool of storage
devices leading to easier storage administration. The advent of networking infrastructure
capable of gigabit speeds further facilitates the service of storage over the network.

36

Furthermore, storage can be added, removed or upgraded without causing any host server
downtime. In addition, the distance limitation of the host server-attached storage model is
also removed.

Approaches to storage area networks have involved specialized technology such as
HIPPI, VaxClusters, Fibre Channel and Infiniband [3][6][7]. The motivation behind the
design is to construct a network that meets all the performance and connectivity
requirements of a storage area network. The downside to these storage area networks is
the requirement to purchase specialized adapters, switches and wiring for equipping the
network. Furthermore, since storage area networks are not expected to be very high-
volume, the cost of these components tends to be on the higher side in comparison to
commodity Ethernet networks. Finally, all these specialized networks have very limited
support for wide area networking and security. In fact, accessing such specialized storage
area networks over long distances requires an IP network bridge.

The question then arises – is it possible to transport the SCSI storage protocol over
commodity Ethernet IP networks [2] and still satisfy the performance requirements of
storage area networks?

The advantages of IP networks are obvious. The presence of well tested and established
protocols such as TCP/IP allow IP networks both wide-area connectivity as well as
proven bandwidth sharing capabilities. Furthermore, the emergence of Gigabit Ethernet
and the future arrival of 10 Gigabit Ethernet seems to indicate that the bandwidth
requirements of serving storage over a network should not be an issue [1]. Finally, the
commodity availability of IP networking infrastructure indicates the cost of building a
storage area network will not be prohibitive.

This paper examines the issues involved in developing a high performance storage area
networking solution. We present a performance analysis of a software-based IP Storage
Area network. First, we measure the latency of block transfers to show that the protocol
overhead of TCP/IP is minimal. Second, we do throughput measurements to show that
while it is theoretically possible to saturate a Gigabit Ethernet network but that the CPU
utilization is high compared to that in specialized storage area networks. We conclude
this paper with an assessment of various hardware and software techniques that can help
obtain high bandwidth at low CPU utilizations.

2 IP Storage
With the steady increase in the storage needs of most organizations, block storage
management is becoming an important storage management problem. Both databases as
well as file systems ultimately rely on the presence of an efficient and scalable block
storage management system. The Small Computer System Interface (SCSI), rather than
Advanced Technology Attachment (ATA), is the block management protocol of choice
for most storage area network solutions because it supports command queuing at the
storage devices and allows for overlapping commands. The SCSI protocol is mostly
implemented over the parallel SCSI cable technology where multiple storage devices are
connected to a SCSI bus via a cable. Though parallel SCSI technology supports gigabit

37

network speeds, the distance (few meters) and the connectivity limitations (16 devices to
a channel) are hampering its acceptance as the gigabit networking transport layer of
choice for the emerging large storage area networks. In addition, the parallel SCSI
technology is more suited to attach to a specific host rather than being available as a
network service which can be managed separately. Thus, specialized networking
protocols such as Fibre Channel [3] and Infiniband [5] have been developed to overcome
these limitations while still providing network-attached block storage at gigabit speeds.

The Fibre Channel protocol covers the physical, link, network and transport layers of the
OSI network stack. Fibre Channel provides support for many different service classes.
The Fibre Channel protocol contains a SCSI over Fibre Channel definition called FCP.
The FCP protocol optimizes data transfer by enabling zero-copy transfers to the receiving
host and reduces buffering requirements by making every frame self-describing. The FCP
protocol also contains a simple and conservative flow control mechanism.

The Infiniband protocol also covers the physical, link, network and transport layers of the
OSI network stack. The Infinband protocol provides support for many different service
classes like Fibre Channel. In addition, the Infiniband protocol provides the QueuePair
programming abstraction that allows application programs to transfer data directly from
the network card into the application. The protocol provides the notion of verbs that
allows application programs to send and receive data. The Infiniband protocol is similar
to Fibre Channel in that it also supports a simple and conservative flow control
mechanism.

Storage over IP is currently driven primarily by the iSCSI protocol [4] that defines the
operation of SCSI over TCP and tries to leverage the existing TCP over IP over Gigabit
Ethernet infrastructure. The goal of iSCSI is to leverage TCP flow control, congestion
control, segmentation mechanisms, and build upon the IP addressing and discovery
mechanisms to create a seamless and scalable storage area network. iSCSI can be
implemented as a combination of network adapter card with the TCP/IP and iSCSI layers
in software. This approach has the appeal of benefiting from the commodity appeal of
existing network adapters and switches, an important factor in lowering infrastructure
costs.

The challenges of building a storage area network over IP are not trivial. Detractors of IP
storage area networks point out that the overhead of using TCP is prohibitive enough to
result in poor latency for transaction-oriented benchmarks. It is also pointed out that
common network application programming interfaces such as sockets do not allow for
zero-copy transmits and receives of data leading to the overhead of multiple data copying
[5]. Such data copying is considered harmful for overall throughput and will affect bulk-
data scientific and video applications. Finally, data is transferred from the network
adapter to the host machine using frame-size transfers. This means that every bulk data
transfer may involve multiple interrupts instead of at most one interrupt in the case of
specialized storage networks. Consequently, the interrupt overhead can be the limiting
factor in peak throughput if the storage device or host server CPU spends the majority of
its cycles processing interrupts.

38

3 Performance Analysis
We present a performance evaluation of a software implementation of IP storage and
point out the performance characteristics that meet the requirements of storage area
networks and those that do not. Our test-bed aims to determine the latency and
throughput characteristics of a host server connected to a storage device over a Gigabit
Ethernet network.

We use the iSCSI protocol [4] to transfer SCSI blocks between the storage device and the
host server. The iSCSI protocol is a standard for transporting SCSI blocks over TCP/IP
and is expected to be an IETF standard by early 2002. The key features of the iSCSI
protocol are:

• Explicit login with the option to negotiate features such as security
• Authentication using SRP and other optional algorithms
• Trunking using multiple TCP/IP connections between storage endpoints
• Digests using CRC-32C and other optional schemes
• Encryption using IPSEC based algorithms
• Framing for faster recovery at high gigabit speeds
• Scalable discovery mechanisms using SLP and other protocols

The storage device is a dual-733 MHz Pentium III with 128 MB of memory and running
iSCSI server software on top of Linux 2.4.2. The host server is an 800 MHz Pentium III
with 256 MB of memory and running iSCSI client software on top of Linux 2.2.19. The
two entities are connected via a Gigabit Ethernet connection over an Alteon 180 switch.
The Ethernet frame size used was the regular 1500 bytes and no Jumbo frames were used.
In addition, TCP/IP zero copy optimizations were not used. Instead, we relied on the
standard socket interface that meant that the TCP copy-and-checksum routines were
performed on both the host server and the storage device.

The test application resided on the host server and read raw SCSI blocks off a SCSI
volume exported by the storage device. Since we wanted to isolate the efficiency of the
transport, the application always read the same block so as to ensure a cache-hit.
Otherwise, a cache miss would involve the RAID subsystem of the storage device and
make it difficult to analyze the results. Writes were not measured as they can be done
using various means (immediate, unsolicited, solicited) and add unneeded complexity to
the analysis.

3.1 Latency Analysis
To measure latency, we used a single thread in the application to read raw SCSI blocks of
various sizes from the storage device. For a particular block size, the same block was
read 10,000 times and the average latency determined from the time required to perform
the experiment. To measure throughput, we used 8 concurrent threads to read SCSI
blocks of various sizes from the storage device. 8 threads were used because that is the
concurrency limit imposed by the iSCSI client software in the host server. For a
particular block size, each thread read a block 10,000 times and the throughput was
calculated based on the time taken for all threads to finish reading the blocks. For the

39

throughput experiment, we measured the CPU utilizations of the host server and storage
device using the vmstat utility.

The latency measurements shown in Figure 1 indicate a variation of average latency for
283 us for a 512-byte block to a high of 2469 us for a 64 KB block. The average latency
values provide no meaning by themselves but are comparable (within 5%) of latency
numbers obtained from the specification sheet of a Fibre Channel storage device for all
block sizes [8]. We had expected the cost of TCP/IP segmentation to have an adverse
effect on latency for the larger block sizes, but it appears that the Gigabit Ethernet adapter
is doing a reasonable job of interrupt coalescing. This indicates that the TCP/IP fast path
for transmits and receives does not impose a prohibitive overhead on latency.
Consequently, we do not expect IP storage (even in its software incarnation with no
optimizations) to have an adverse effect of transaction-oriented applications and
benchmarks.

Figure 1. Latency Measurements

0

500

1000

1500

2000

2500

3000

0.5 1 2 4 8 16 32 64
Block Size (KB)

A
vg

 L
at

en
cy

 (u
s)

3.2 Throughout Analysis
However, the throughput measurements indicate a different story. Figure 2 indicates that
while the average throughput from the storage device is competitive for the lower block
sizes in comparison to that obtained from a Fibre Channel storage device, the peak
throughput is about 60% less than what is obtainable from a Fibre Channel storage
device[8]. In these experiments, the peak throughput is about 52 MBps for the 64 KB
block size and is constrained by the CPU of the host server whose utilization is at 100%.
A profiling of the CPU utilization of the host server indicated that the primary
components were interrupt overhead (72%) and TCP copy-and-checksum (23%).

40

In addition, during the throughput experiments for the 64 KB block size, the CPU
utilization of the storage device is at 51% indicating that the storage device is capable of
delivering additional throughput. In fact, by using multiple initiators, we are able to
obtain a throughput of 100 MBps at around 98% CPU utilization in the storage device. At
this throughput, the constraining factor was the limit imposed by the network adapter.
The CPU utilization figures were not available for the Fibre Channel storage device [8].

The CPU utilization of the host server is greater than that of the storage device because
the host server is the receiver of bulk data. The receiving of data involves interrupting the
host server every time a frame arrives and increases the interrupt overhead even if
interrupt coalescing is used. This implies that if the experiments above involved writes,
then the CPU utilization of the storage device would be higher.

Figure 2. Throughput
Measurements

0

10

20

30

40

50

60

0.5 1 2 4 8 16 32 64
Block Size (KB)

Th
ro

ug
hp

ut
 (

M
B

ps
)

The results indicate that the main performance bottleneck in meeting the requirements of
storage area networks is the high CPU utilization involved with bulk data transfers. The
two main components of the high CPU utilization are:

• Interrupt overhead due to frame size transfers from the adapter to the host at high
rates.

• The overhead due to TCP copy-and-checksum in standard TCP/IP stacks for bulk
data.

4 Improvement Techniques
There are four potential avenues to reduce the high CPU utilization issues in an IP
storage subsystem.

41

First, the interrupt overhead can be reduced by using 9KB Jumbo Ethernet frames,
because this reduces the number of interrupts per bulk data transfer. For example,
transferring a 32 KB data payload using the standard Ethernet frame may involve as
many as 22 interrupts in the worst case whereas using the 9KB Jumbo Ethernet frame
only 4 interrupts may be involved. However, the Jumbo Ethernet frames are not
standardized and are not likely to be present in 10 Gigabit Ethernet.

Second, modified TCP/IP stacks with zero-copy transmit capability can be used to reduce
the TCP copy-and-checksum overhead; the responsibility of generating the checksum is
off-loaded to the network adapter. However, zero-copy receives are not possible on such
stacks because the network adapters are typically unaware of the final destination of any
frame.

Third, network adapters with TCP/IP offload engines (TOE) have been released [9]
where the entire TCP/IP stack is offloaded onto the network adapter. This also reduces
the TCP copy-and-checksum overhead. However, zero-copy receives are not possible on
such stacks because the TCP/IP stack is also typically unaware of the final destination of
any TCP/IP packet. There is proposed work to add enough application hints to the
TCP/IP header to make zero-copy receives possible.

The fourth and most promising approach is the anticipated emergence of specialized
adapters that have an iSCSI interface. This approach will reduce the interrupt overhead,
as the iSCSI adapter will ensure at most one interrupt per data transfer. In addition,
offloading the protocol processing to the adapter will eliminate TCP/IP copy-and-
checksum overhead. The disadvantage of this approach is that the use of such specialized
adapters implies that commodity network adapters cannot be used in IP storage area
networks. However, one can still use the existing switches and wiring present in
commodity Ethernet networks.

5 Conclusions
Advanced networking technology has led to the concept of storage networks where
pooled storage is available as a service to host servers. The emergence of Gigabit
Ethernet technology has raised the question of whether we can use commodity IP
networks for storage instead of specialized storage area networks. This paper examines
the issues involving IP storage networks and presents a performance analysis focusing on
latency and throughput. The results indicate that the main performance bottleneck in
meeting the requirements of storage area networks is the high CPU utilization involved
with bulk data transfers. The two main components of the high CPU utilization are the
interrupt overhead due to the bulk data transfers as well as the TCP copy-and-checksum
overhead. We finally present four potential avenues to reduce the high CPU utilization
issues in an IP storage subsystem.

42

References
[1] A. Gallatin, J. Chase, and K. Yocum, "Trapeze/IP: TCP/IP at Near-Gigabit Speeds",
Proceedings of USENIX Technical Conference (FreeNix Track), June 1999.
[2] R. Van Meter, G. Finn and Steve Hotz, "VISA: Netstation’s Virtual Internet SCSI
Adapter", ASPLOS-VIII, October 1998.
[3] A. Benner, "Fibre Channel: Gigabit Communications and I/O For Computer
Networks", McGraw-Hill, 1996.
[4] J. Satran et al., "iSCSI", IETF Work in Progress (IPS group),
http://www.ietf.org/html.charters/ips-charter.html, 2001.
[5] Hsiao Keng, and J. Chu, "Zero-copy TCP in Solaris", Proceedings of the USENIX
1996 Annual Technical Conference, January 1996.
[6] http://www.infinibandta.org
[7] K.Voruganti, and P. Sarkar, “An Analysis of Three Gigabit Networking Protocols for
Storage Area Networks’. 20th IEEE International Performance, Computing, and
Communications Conference”, April 2001.
[8] Mylex Corp., “White Paper on the Performance of the Mylex SanArray Pro FF2
Storage Controller”, Mylex Technical Report, 2001.
[9] http://www.alacritech.com

43

File Virtualization with DirectNFS
Anupam Bhide, Anu Engineer, Anshuman Kanetkar, Aditya Kini

{anupam, anu, anshuman, aditya}@calsoftinc.com
CalSoft Private Limited, Pune 411 013, India

Tel: +91 20 567-4644
Fax: +91 20 567-7279

Christos Karamanolis, Dan Muntz, Zheng Zhang
{christos,dmuntz,zzhang,gary_thunquest}@hpl.hp.com

HP Research Labs
1501 Page Mill Road, Palo Alto CA 94304-1126

tel: +1 650 857-1501
Gary Thunquest

HP Colorado
{gary_thunquest}@hp.com

Abstract
There is a definite trend in the enterprise storage industry to move from Network
Attached Storage (NAS) solutions to high performance Storage Area Networks (SAN).
This transition is not easy because of the well-entrenched NAS infrastructure that has
already been deployed. This paper attempts to define a file system that can leverage the
existing NAS software infrastructure along with evolving SAN technology to provide
the benefits of high performance storage access while reducing the cost of migrating to
these networks.
In this paper, we propose a new network file system, DirectNFS, which allows NAS
clients to take full advantage of the performance and scalability benefits of SANs. In
order to achieve this goal, the system presents a NAS interface to existing NAS clients
while allowing DirectNFS clients to access storage directly over shared SAN, i.e.
clients bypass the server for data access. A server maintains the NAS interface for
legacy clients and arbitrates access to metadata by DirectNFS (SAN aware) clients. This
metadata server ensures that the system is operable for both legacy NAS clients as well
as DirectNFS clients. The communication protocol of DirectNFS is designed as an
extension of traditional network file systems protocols, such as NFS and CIFS.
A prototype of DirectNFS has been built for Linux, as an extension to the native NFSv2
implementation. Initial results demonstrate that the performance of data intensive
operations such as read and write is comparable to that of local file systems, such as
ext2.

1. Introduction
For the past few years, there has been an increasing trend to replace NAS storage
systems by SAN. The primary reasons for this migration have been the increased data
storage requirements that constantly plague the enterprise computing environment.
SANs provide seamless expansion, combined with high throughput, and increased
manageability. However, NAS architecture has been around for many years and has a
well-entrenched installed base. The migration to SAN makes this NAS infrastructure
obsolete and adds to the cost of already expensive SAN systems. One major drawback
of the SAN systems that are deployed now is the lack of interoperability. However, this

44

situation will eventually be remedied as more users adopt SANs and as SAN standards
evolve.
Today, with multiple operating systems and multiple vendor platforms present in most
data centers, SAN inter-operability is highly valued. NAS technologies, on the other
hand, are mature and interoperable. They use de-
facto standards such as NFS[1] and CIFS[2] to
provide data access. NFS clients are available for
almost all platforms. Both NFS and CIFS have
mechanisms to control and synchronize
simultaneous access to shared data. These
inherent features of NAS were taken advantage
of in the design of DirectNFS.
A simple way of using the SAN, as shown in
Figure 1, is to retain the familiar client/server
model, with all the storage resources on the SAN
appearing as local disks to the server. All the file
accesses by clients in this scenario are forced to pass
through the file server. This creates heavy loads on the file server.

In order to eliminate this overhead of data being copied through both SAN and LAN,
the clients must be given the ability to access the data directly through SAN. To enable
clients to access data directly, we have to provide them with a file location map that
describes on which device and on which block the file data resides - information that is
maintained as part of the metadata of the file system.

There have been different solutions to the distributed storage problem, ranging from
“Shared Everything” to “Shared File Volume” architectures. In a “Shared Everything”
filesystem, all clients maintain data as well as metadata portions of the file system. Most
of the cluster file systems follow this approach (Petal /Frangipani[3], GFS[4]). In a
“Shared File Volume” filesystem, one central entity is in charge of updating the data
and metadata. Most client / server file systems follow this approach (NFS, CIFS). In a
“Shared Everything” approach the implementation of the file system and its recovery on
failure is complex. On the other hand, in a “Shared File Volume” approach, the
scalability and performance of the file system are limited due to the existence of a
single server. In the design of DirectNFS we have chosen to tread a middle ground
between these two approaches. We have chosen to create a shared architecture for data,
by making the clients aware of the physical layout of each file, which allows the clients
to access data directly through the SAN. However, we do not allow clients to modify
the metadata directly. Once we allow the clients to access data directly, the NAS-
provided guarantees of single system semantics break down. This is unacceptable
because a lack of single system semantics would lead to corruption of the file system.
The solution is to create an entity that enforces these semantics, and this entity in
DirectNFS is known as the metadata server. The metadata server is responsible for all
metadata modifications in the file system. Since most filesystem metadata operations
are atomic in nature, a single authority in charge of metadata modifications makes file
system implementation and recovery easier. The metadata server also provides NAS

LAN

SAN

Figure 1: SAN with NAS Clients

45

interfaces to legacy clients for interoperability. This approach does have a drawback of
introducing a single point of failure (metadata server) which makes the system less fault
tolerant as compared to “shared everything” file systems. We believe that the potential
gains from implementing a “shared
everything” file system and making it
compatible with legacy clients are not
worth the complexity of the
implementation.

DirectNFS clients are allowed to
cache the block metadata, or the
information pertaining to location of files.
Coherency is enforced using a lease
protocol. The metadata server acts as an
arbitrator between the clients to make sure
that the cached metadata is valid. The
network architecture of DirectNFS is shown in Figure 2. By adding a SAN connection
and DirectNFS software to each client, clients can utilize the file server for file system
metadata access, locking, and coherency, but they read and write file data directly from
the storage, bypassing the file server. The introduction of a simultaneous data access
path can improve file serving performance through parallel and direct transfer of data
between the data sources and the client systems. This also achieves better utilization of
the file server by reducing the CPU and network load on the metadata server. Clients
that either do not have a SAN connection or do not have the DirectNFS software can
continue to access data through the server using the NFS or CIFS protocol clients,
which they already have. This makes DirectNFS a powerful tool in migration of
existing LAN/NAS combination to SAN.
We have implemented a GNU/Linux prototype of DirectNFS. Many platforms such as
FreeBSD, Solaris and HP-UX were considered for reference implementation.
GNU/Linux was chosen primarily because of the ease of source code availability,
general acceptance in terms of usage and the support from the large community of
hackers.

In our GNU/Linux prototype, we have demonstrated throughput comparable to that
of a local (ext2) file system. Thus, we provide client applications the ability to have
both shared file access and near local file system performance simultaneously. We have
also observed lower server resource utilization in the metadata server compared to a
NAS server, which implies that DirectNFS can support more clients than traditional
NAS servers. DirectNFS implementation is transparent to applications running on the
clients: no source code changes are necessary to client applications. During system
operation, DirectNFS can be turned on or off without altering the file system semantics.
In this paper, in section two we talk about the goals associated with the DirectNFS
design, section three talks about the design in detail. Section four of this paper deals
with the Linux prototype. Section five discusses work done previously in this area. In
section six, we highlight the performance achievements of DirectNFS. We present
future directions for DirectNFS in section seven, and conclude in section eight.

LAN

SAN
Metadata
Server

Figure 2: DirectNFS Network Architecture

46

2. DirectNFS Design Goals
In this section, we provide a list of design objectives of the DirectNFS architecture. In
subsequent sections, we discuss the DirectNFS architecture in greater depth.
• Storage Scalability - Storage space must scale well with the continuous

accumulation of data.
• High Performance - DirectNFS aims to provide a high performance remote file

system, with orders of magnitude performance improvements over traditional NAS
protocols.

• File System Scalability and Recovery - To create a simple distributed file system
that can provide both scalability and recoverability.

• Independence from Physical File Systems - DirectNFS must be able to run
irrespective of the underlying physical file system that is used for storage.

• Portability - DirectNFS should be portable to other Operating systems without
much effort.

• File Virtualization over SANs - Enable the seamless integration of Storage Area
Networks into NAS environments by adding a “File Virtualization” layer on top of
the block-level interface that SANs provide.

3. Design

The basic philosophy behind the design of
DirectNFS is the separation of data from
metadata operations to increase parallelism
in file system operations. Only read and
write operations are taken over by
DirectNFS client software, all the other file
system operations are still performed
through the NAS protocol. This makes
DirectNFS design portable, thereby
enabling us to use the same design on a
host of other platforms including NT, BSD,
Solaris and HP-UX.
The Figure 3 shows these operations more
clearly, the communication between the
DirectNFS client and metadata server. This

communication includes lease protocol communication to maintain metadata coherency,
the metadata information requests and NAS protocol functionality that is not intercepted
by DirectNFS. The legacy NAS client communicates with the metadata server as if it
were an ordinary NAS server.

3.1.Architecture Overview
This section provides an overview of DirectNFS architecture including DirectNFS
extensions to the NFS protocol, cache coherency mechanisms, optimizations, and
security.

Figure 3: DirectNFS Architectural Overview

LAN

Metadata
Server

NAS Protocols

DirectNFS Protocol
Direct Data Access

Legacy
NAS
client

SAN

47

3.1.1. Extensions to NFS
DirectNFS defines extensions to the NFS-RPC[5] protocol that implement the
separation of the data/metadata path. This includes new RPCs used by the clients to
retrieve the physical location of files on the storage (block lists) and additional RPCs to
enforce cache coherency. The native RPC set of NFS is used to perform metadata
operations on the server.
The new RPCs implemented by DirectNFS are,

• GETBLKLIST : This RPC allows the clients to get the block list of the files that
are present in the system. The arguments to this RPC are the NFS file handle
and the byte range for which the block list is requested.

• GETLEASE : This RPC is used by the DirectNFS client to acquire the lease for
locally cached metadata. This RPC can be piggy backed on the GETBLKLIST
RPC. The argument is the NFS file handle and duration. The reply sent by the
server indicates whether the requested lease has been granted or denied.

• VACATELEASE : This RPC is used by the metadata server to ask a client to
release the lease it has on certain file. The argument to this RPC is NFS file
handle.

• VACATEDLEASE : This RPC is issued by the client, when it releases an lease
due to the request from the metadata server.

Using these RPCs, clients are able to retrieve the physical locations of files and access
them directly without conflict.
3.1.2. Metadata Caching and Cache Coherency
DirectNFS clients use extensions to the NAS RPC protocols to retrieve file metadata,
i.e. physical block and device numbers. This file metadata is then cached locally on the
client in a Block-Number Cache (BNC). This allows DirectNFS clients to cache the
most frequently used physical block numbers for files that are most frequently used.
However, introducing a distributed cache also introduces coherency issues, which we
solve using a leases-based protocol.
A lease is a time-bound object granted by a lease server to a lease client. In DirectNFS,
a lease is granted on a per-file basis to clients by the metadata server. The lease
guarantees the client that as long as its lease is valid; it holds the most current copy of
the data object (i.e. the cached list of blocks for the file). Multiple clients are allowed to
share leases on the same data object for read-only access. However, any changes to this
data by a third party can only be made when the server has revoked all other leases.
This revocation is either done explicitly by notifying the client, or implicitly, if the
leases time out. In either case, once the lease expires, the lease-holder has to discard the
cached data protected by the lease.
The time-bound property of leases ensures simple recovery of clients/servers in case of
a crash or network failure. Neither the client nor the server maintains any state. In case
of a system crash, the leases that were issued before the system went down will expire,
which brings the system to a known, stable state. This makes the recovery algorithm
extremely simple to implement, especially when compared to the NLM protocol or
other Distributed Lock Managers.
However, this coherency mechanism does not protect the system against SAN
partitions, which may lead to data corruption – it is assumed that the SAN provides a
reliable and available service for data delivery.

48

When the DirectNFS client needs to read/write a block of data, it first ensures that it has
the right lease for the kind of access it needs to
perform. The interaction between DirectNFS
clients and metadata server for lease acquisition
in write and read scenarios is illustrated in
figures 4 and 5 respectively.
Once the lease has been validated, the client
looks up the Block Number Cache for the
physical location of the data. The metadata
server is then queried for metadata information
only in the event of a cache miss.
Metadata caching is augmented with “write
allocation gathering”. This is the process of
deferring disk block allocations during file
writes. In DirectNFS, we do write allocation by
gathering write requests at the client. Smaller
byte-range requests are merged into larger
requests, thereby reducing the number of
metadata requests to the server. This
significantly improves performance, by reducing
the number of requests to the server that the
server has to service. “Write gathering” [6]
performed by NFS is similar in its approach
and it is used to exploit the fact that there are
often several write requests for the same file presented to the server at about the same
time.
3.1.3. Write Gathering
Distributed-system file access patterns have been measured many times[7]. It has been
found that sequential access is the most common access pattern.
Under DirectNFS, for every write request, a cache miss would result in a
GETBLKLIST RPC being sent to the metadata server. To improve write performance, a
technique called write gathering is employed that exploits the fact that there are often
several write requests for the same file called about the same time. With this technique
the data portions of these writes are combined and a single metadata update is done that
applies to them all. In this way, the number of RPCs being sent out would dramatically
reduce, and considerably improve write performance.
The performance for write gathering depends on the periodicity of the deferred write
requests to the server. Two events can trigger this: the write back cache being flushing
periodically and an eviction notice received at the client.
3.1.4. File Virtualization
One of the major issues of merging SAN and NAS is the basic unit upon which they
operate. The legacy NAS protocols operate at a “File” level abstraction. However, the
SAN systems normally present the block level interfaces that are leveraged by
filesystems.
In the DirectNFS design, we were faced with the problem of maintaining support for
legacy clients, which meant that we needed to maintain the file level abstraction. On the

Client A Client B

1

2

3
4

5

6

Get Read Lease

Grant Lease

Vacate Lease

Vacated

Get Write Lease

Grant Write Lease

Meta Data Server

Figure 5: Sequence Diagram for Lease Protocol
Interactions (Read-Write Conflict Case)

Figure 4: Sequence Diagram for Lease Protocol
Interactions (Read-Sharing Case)

Client Client B

1

2

3
4

Get Read Lease

Grant Lease

Grant Read Lease

Get Read Lease

Meta Data Server

49

other hand, the benefits of the SAN can be leveraged if and only if we went down to the
block level. In order to solve this problem we created a “virtualized file interface over
SAN”, where the legacy NAS clients are under the impression that the NAS server
stores the files, but the DirectNFS clients went below the file abstractions to leverage
the SAN performance by using block device interface directly. In order to implement
this duality, we had to achieve the data-metadata split and create other mechanisms like
the lease framework in order to tackle complexities arising out of the merger of SAN
into NAS.
The DirectNFS file system had to merge these two different worldviews to create a high
performance distributed file system, which offered a NAS interface. This was achieved
by maintaining a “Virtual File Interface”. However, the DirectNFS client behavior can
be compared more to block device driver, than really a NAS file system client. In other
words, we introduced the SAN abstractions and performance to the NAS protocols
without breaking it. This unification of SAN of under NAS is what is referred to as file
virtualization in DirectNFS.

3.1.5. Security Considerations
There are certain assumptions that are critical to DirectNFS architecture that need to be
pointed out while understanding the security mechanisms in DirectNFS. They are
• The base NFS protocol operates on atomic data entities known as files.
• DirectNFS does not alter the semantics of NFS protocol
• DirectNFS relies on the file system and block device layer to provide security that is

needed.
DirectNFS has modified the VFS layer[8] of NFS communication not the NFS
semantics. The real physical file system must be present for DirectNFS to work. This is
a strict requirement because we still rely on the file abstraction to maintain the
coherency of data.
In DirectNFS, the file system layer is responsible for security and data coherency. In
order to solve the coherency problem at file level, we have created a framework of
leases ensuring that coherency is maintained at the file system level.

However, in case of rogue agents who can access the storage system at the block
interface by bypassing DirectNFS completely, the possibility of unauthorized access
remains, unless the block access mechanism (block device driver) provides security.
We currently provide only file level security but do not provide block level security.
NASD [9] addresses the issue of block level security with the help of special hardware.
If the shared storage contains security mechanisms, for example iSCSI [10] has security
mechanisms built in and when DirectNFS operates on those environments it can be
made to run in a secure mode by leveraging these underlying mechanisms. Thus
DirectNFS relies on existing infrastructure to take care of security (iSCSI, Fiber
channel[11], NFS). This is a conscious design decision made in favor of making this
protocol run on extremely varied range of hardware.

50

4. Implementation of the Linux Prototype
The implementation philosophy of DirectNFS was to reuse existing libraries as far as
possible and to maintain portability. It was implemented as a kernel loadable module on
Linux 2.4.4, and it consists of roughly 8000 lines of code on the client and 1500 lines of
code on the server.

4.1.DirectNFS with FiST
In order to make the implementation easier and portable we have used FiST (File
System Translator). FiST [12] is a stackable file system generator. It defines its own
highly abstract Domain-Specific Language (DSL) for describing file-system filters. A
compiler translates the DSL description to C code for various operating systems. FiST
also provides the necessary infrastructure for interposing the generated filter between
the VFS (Virtual File System) and the natively installed file systems in the kernel. FiST
played an important role in the initial phase of the implementation, when we used it to
generate a code skeleton for a simple, pass-through file system that interposed itself
between the VFS layer and the NFS client.
On the DirectNFS client, the Linux DirectNFS module can be thought of as consisting
of these sub-modules:
1. The DirectNFS Filter/Redirector – This component interposes itself between the

VFS and the NFS client module. It intercepts all file I/O operations (read, write) and
redirects them as block I/O requests over the SAN. This was achieved by modifying
the basic FiST-generated filter to enable us to intercept I/O operations instead of
passing them down the file system stack, which is the default FiST policy. The I/O
interception code in the redirector is system-dependent. The redirector also contains
the Block Number Cache, where the client caches location information for each file
that is accessed over DirectNFS.

DirectNFS Redirector Lease
Service

NFS Client
Transport
Wrapper

VFS

Lease
Service

knfsd

DirectNFS

RPC Client/Server RPC Client/Server

Transport
Wrapper

DirectNFS Client DirectNFS Server

Physical File System

VFS

SAN

Figure 6: DirectNFS Software Architecture

51

2. Leasing Service – This is a distributed protocol, which allows multiple DirectNFS
clients to keep their cached metadata coherent. The leasing service has been built as
a library that is independent of the transport mechanism underneath it. This allows
us to plug in any transport mechanism by writing a transport wrapper for the
mechanism.

3. Transport Wrapper – This provides an interface between the leasing service and
the transport layer, in this case - RPC. This wrapper allows the file system client to
query file location information (i.e. block numbers) from a central server and to
communicate lease requests to the server.

The DirectNFS server module consists of:
1. Leasing Service – This is the server-side counterpart of the leasing service. It is

responsible for maintaining a list of lessees for each file, and to resolve lease
conflicts.

2. Transport Wrapper – The transport wrapper on the server as on the client provides
an interface between the leasing service and the transport layer. This wrapper allows
the server to interface with file system clients that query for file location
information and to communicate lease rejections or grants to them.

3. DirectNFS client – A DirectNFS client is interposed between VFS and the physical
file system, to provide lease-based coherency for locally originating file accesses.
This could be from local applications trying to access the physical file system or
from knfsd while it is serving legacy NAS clients.

The DirectNFS module on the client is responsible for trapping file open, close, sync,
unlink, read, and write calls. Since these operations access the location information of
the file, the file’s lease is tested for validity. If the lease is invalid, it is acquired by
issuing a GETLEASE RPC to the metadata server. For read and write operations, the
Block Number Cache is looked up for cached block numbers. On a cache miss, a
request is sent to the server, with a piggybacked lease request, if required. This is done
with the GETBLKLIST RPC. Once the client is granted a valid lease on the file, and
receives the requisite file location information, it accesses those blocks directly over the
SAN.
In the event that the client receives a VACATE RPC, which signals the server ordering
an eviction of the lease that the client holds on the metadata, the client flushes the cache
that is associated with the file, and then proceeds to inform the DirectNFS server by
sending the VACATED RPC.
Note that the DirectNFS Leasing Service makes the following assumptions:
1. The lease is time-bound, has a fixed duration, and must be renewed explicitly at the

server in order for its time period to be extended.
2. The clock skew between the participating entities in the lease protocol is bounded.
3. The time taken by the client to flush its cached after eviction is bounded.
Lease conflicts are resolved by the lease server using the matrix in Table 1.

 Read Write
Read Shareable Non

Shareable
Write Non

Shareable
Non
Shareable

Table 1: Compatibility Matrix for DirectNFS Leases

52

5. Performance
One of the principal objectives of
DirectNFS is performance. In this
section, we present the performance
numbers that we obtained from the
prototype implementation. We have
measured the performance of
DirectNFS against other file systems
like ReiserFS[13], ext2 and NFS
versions 2 and 3[14]. The systems
under test were three HP Netserver LC
2000, Pentium III’s -933 Mhz with 128

MB RAM and 256KB L2 cache. The
machines were running Redhat

Linux, with custom-built kernels from the
2.4.x series. They were connected to a
JBOD (HP Rack Storage/12) of four Ultra 3
Hot-Swap SCSI[15] disks 9 GB each. The
system was set up in a SCSI multi-initiator
arrangement, with two machines acting as
DirectNFS clients, and one machine as the
DirectNFS metadata server, with all three
machines sharing access to the JBOD
through a shared SCSI bus. This was used
to emulate a SAN. The benchmarking

utility that we used was Iozone [16].
We benchmarked the performance of
DirectNFS with varying file sizes and
record sizes. From the data, we observed
no significant variations in the
comparative figures. Hence, we have
included the performance figures of read,
write, reread and rewrite of a 2GB file
over ResierFS, DirectNFS, Ext2, NFS2
and NFS 3. Figure 7 is a the performance
graph of various file system read

throughputs for varying file sizes, with fixed record size of 256 KB. The rest of the
graphs - Figures 8, 9 and 10 - carry comparisons of write, re-read and re-write
operations. These figures indicate that DirectNFS performances are comparable to local
file systems.

Read Comparison

0
5000

10000
15000
20000
25000
30000
35000

2 GB 1 GB 500
MB

100
MB

File Size

K
B

 /
Se

c

DirectNFS
Ext 2
Reiser
NFS 2
NFS 3

Figure 8: Read Comparison

Write Comparison with 2 GB file

0

5000

10000

15000

20000

25000

30000

2 GB 1 GB 500 MB 100 MB

File Size

K
B

/ S
ec

DirectNFS

Ext 2

Reiser

NFS 2

NFS 3

Figure 7: Write Comparison ReWrite Performance

0

5000

10000

15000

20000

25000

30000

35000

2 GB 1 GB 500 MB 100 MB

Fi l e S i z e

Direct NFS

Ext 2

Reiser

NFS 2

NFS 3

Figure 9: Rewrite Comparison

53

The write performance of DirectNFS shown in Figure 8 is slightly worse than Ext2 and
ReiserFS. Re-read and re-write were tested so that we could measure the effects of the
Linux page cache.
We have measured throughput for these
four operations with varying file sizes
starting from 100 MB up to 2GB and
varying record sizes starting from 4 KB up
to 256 KB. Since the throughput figures
we obtain did not vary significantly across
these series, we reproduce data for 256KB
record sizes only. The file sizes selected
were suitable large, as we expect the
primary use of DirectNFS to be
multimedia applications (e.g. streaming
media servers), which use large files.
Note that NFS v2 and v3 throughput
figures that we measured were very close
to each other. Even though NFS 3
implements Asynchronous writes, NFS 2
clients under the Linux use write caching and by default run with synchronous writes
set to off. This hides the RPC latency of NFS from client applications. However, we
wanted to compare against real world performance and hence we tried to measure
against the fastest NFS performance possible.
From a glance at the throughputs for read and re-write tests, it appears that DirectNFS
performance comes close to matching the performance of both ReiserFS as well as ext2.
This can be accounted for by the metadata cache, which contains logical to physical
block translations, and improves the performance of DirectNFS, bringing it close to
ext2 and in some cases surpassing it (this is because the mapping function for the cache
is less expensive than the corresponding lookup operation in EXT2 or ReiserFS). We
also examined the effect of record size on performance. Figure 11 is a comparative
graph for the read operation for various file systems with fixed file size but with varying
record size. We did not observe any significant effect of record size on throughput of
any of the file systems under consideration. This is most likely due to the pre-fetching
in the VFS layer.

If we look closely at the performance
relative to NFS2 or NFS3, we see that
the performance improvements that are
achieved are significant, and are 2 to 3
times that of the Linux implementation
of NFS.
There are two measures of goodness for
a network file system, the first is the
throughput that each client can expect
from the file system, and the second is
the server scalability. DirectNFS

Re-Read Comparison

0

5000

10000

15000

20000

25000

30000

35000

2 GB 1 GB 500 MB 100 MB

Fi l e S i z e

Direct NFS

Ext 2

Reiser

NFS 2

NFS 3

Figure 10: Re-Read Comparison

Figure 11: Comparison with varying record size

Comparison with varying record size

0
5000

10000
15000
20000
25000
30000
35000

4KB 64KB 256KB

record size

K
B

 /
Se

c

DirectNFS
Ext 2
Reiser
NFS 2
NFS 3

54

addresses both of them by increasing the client throughput by a factor of 2 to 3 as
compared with competing NAS technologies like NFS, and increases the server
scalability significantly by reducing CPU utilization at the server.
A look at Figure 12 shows the relative CPU utilization of DirectNFS with NFS. The
tests that were carried out were sequential read, sequential reread, sequential write, and
sequential rewrite. Now, if we look at the NFS performance, we can conclude that NFS
(with a single client running Iozone tests on a file of size 1GB) requires a mean CPU
utilization of more
than 20%. Thus, the
scalability of the
server is limited to the
number of clients that
access the NFS server
at any point of time.
However, a look at the
DirectNFS numbers
for the same test
conditions shows a
radically different
scenario. One can see
that there is an initial
period where the CPU
utilization is roughly at an average of 10%, with a peak utilization of 20%. This is
because of aggressive pre-fetching of metadata by the DirectNFS client during the start
of file I/O. This accounts for the lower CPU utilization on the server when servicing a
DirectNFS client as compared to a NFS client.
Thus, it can be seen that the CPU utilization is significantly lower than NFS utilization
for the same one client setup that we used to measure NFS utilization. This indicates
that the DirectNFS metadata server may scale better than NFS servers.
Another key parameter by which scalability can be judged is the amount of network
traffic, expressed in terms of the number of RPCs that are required for a given operation
to take place. A measurement of the number of RPCs that are required to run the given
set of tests reveals that DirectNFS uses about a tenth of the total number that is required
for NFS. This can be explained by the fact that the number of metadata requests in
DirectNFS is drastically lower than NFS because of write allocation gathering and the
metadata pre-fetching performed by the client. This makes the data-metadata split
attractive, as this considerably reduces the traffic on the network and makes DirectNFS
a lot more scalable.
Overall, DirectNFS performs significantly better than NFS for all of the tests,
outperforming it by a factor of 2 to 3.
DirectNFS has been designed to counter network bottlenecks and ‘store-and-forward’
overheads on NAS servers. So, the server CPU and I/O subsystem are no longer the
bottleneck. Introducing parallelism to storage access also means that the system will
scale as the available bandwidth for the storage network increases. Isolating storage
traffic on to a separate network allows for better utilization of the messaging network by

Figure 12: CPU utilization figures for a single client setup

55

other network application protocols.
6. Future Work

1. Client Side Disk Caching: To further improve performance, the size of the
cache that holds the physical block translations should be made as large as
possible. To overcome the memory size limitations that we will come across
when dealing with large files and clients with multiple such workloads, the
block translations can be stored on disk. Thus, the limitation that currently exists
on the number of cacheable translations increases greatly, helping us to achieve
greater scalability.

2. Volume metadata caching: When the metadata server receives a
GETBLKLIST request, the DirectNFS filter uses the physical file system’s
bmap operation to obtain the physical block numbers for the requested byte
range. Normally, the block buffer cache would cache the most frequently used
blocks in the storage system. Servers normally have a large amount of RAM,
and we feel that caching the entire metadata for the file volume is feasible. In
fact, for a file system formatted with 4KB-sized blocks, the cost of caching all
the physical block numbers of the volume is about 1MB per GB.

7. Related Work
There are some interesting existing systems in the distributed File Systems space.
Storage Tank [17] follows a similar approach for moving the data access path away
from the server. However, the design of Storage Tank lacks the portability of
DirectNFS. This is because DirectNFS uses a portable approach leveraging the ability
of a code generator like FiST to drastically reduce the porting of the file system to
multiple platforms. Many cluster file systems such as the Veritas Cluster File System
[18] are layered above and integrated with a proprietary physical file system. CMU’s
Network Attached Secure Disks requires Intelligent Devices, which embed some file
system functionality in the Storage devices thus handling various issues like security,
scalability and object management. NASD addresses the security aspects of a SAN
based file system well, but the need for manufacturers to incorporate these changes into
disks highlights the problem associated with this approach.
 Other similar work in the area includes Frangipani/Petal, Tivoli’s SANergy [19] and
EMC’s Celerra[20].

8. Conclusion

DirectNFS presents an optimum blend of NAS and SAN storage technologies. It uses
traditional distributed file system protocols such as NFS for meta-data access, with
extensions for direct data access using SANs. The end result is a distributed file system
that scales much better at high loads and has a data throughput that is a factor of 2 to 3
better than existing NAS protocols. In fact, this performance was comparable to that of
a local file system.
The portable design of DirectNFS makes it relatively simple to port to other operating
systems. In the future, we plan to port DirectNFS to other platforms such as HP-UX,
Windows2000 and FreeBSD and add CIFS compatibility.

56

Acknowledgments
We would like to take this opportunity to thank Anandamoy Roychowdhary, who
played an important role in both the design as well as the implementation of Direct
NFS.
We are grateful to Sunu Engineer, who helped with the design.
We would also like to thank Alban Kit Kupar War Lyndem, Tanay Tayal and Gurbir
Singh Dhaliwal who helped with the implementation.

References

[1] Sun Microsystems, NFS: Network File System Protocol Specification, RFC

1094, 1988.
[2] P. J. Leach, A common Internet file system (CIFS/1.0) protocol, Technical

report, Network Working Group, Internet Engineering Task Force, December 1997.
[3] C. A. Thekkath, T. Mann, and E. K. Lee., Frangipani: A Scalable Distributed File

System., In Proceedings of the 16th ACM Symposium on Operating Systems
Principles, Oct. 1997.

[4] Kenneth W. Preslan, A 64-bit, Shared Disk File System for Linux, Proceedings
of the Sixteenth IEEE Mass Storage Systems Symposium held jointly with the
Seventh NASA Goddard Conference on Mass Storage Systems & Technologies,
1999

[5] Sun Microsystems., Open Network Computer: RPC Programming., The official
documentation for Sun RPC and XDR.IBM Inc.

[6] Chet Juszczak, Improving the Write Performance of an NFS Server (1994),
Proceedings of the USENIX Winter 1994 Technical Conference, 1994

[7] M.G. Baker, J.H. Hartman, M.D. Kupfer, K.W. Shirriff, and J.K. Ousterhout.
Measurements of a distributed file system., Proceedings of the Thirteenth ACM
Symposium on Operating Systems Principles. pages 198-212, 1991

[8] D. S. H. Rosenthal., Requirements for a "Stacking" Vnode/VFS Interface”, UNIX
International, 1992

[9] G. Gibson et al., File Serving Scaling with Network-Attached Secure Disks,
Proceedings of the ACM Int. Conf. on Measurements and Modeling of Computer
Systems (SIGMETRICs `97), Seattle, WA, June 15-18, 1997.

[10] Y. Klein and E. Felstaine., Internet draft of iSCSI security protocol.
http://www.eng.tau.ac.il/~klein/ietf/ietf-kleiniscsi -security-00.txt, July 2000

[11] ANSI, Fiber Channel Transmission Protocol (FC-1), ANSI draft standard
X3T9.3/90-023, REV 1.4, July 6, 1990.

[12] Erez Zadok, FiST: A System for Stackable File System Code Generation, PhD
thesis. Columbia University, May 2001.

[13] NameSys Inc., The ResierFS file system, http://www.resierfs.org, 2001
[14] B. Callaghan, B. Pawlowski and P. Staubach, NFS v3 Protocol Specification,

RFC 1813, June 1995.
[15] ANSI, SCSI-3 Fast-20 Parallel Interface, X3T10/1047D Working Group,

Revision 6.

57

[16] W. Norcutt, The IOZone file system benchmark, Available from
http://www.iozone.org/, April 2000

[17] Storage Tank Software, http://www.ibm.com/, 2000
[18] Veritas Inc. Veritas Cluster File System, http://www.veritas.com, 2001
[19] Mercury Computer Systems Inc., High Speed Data Sharing among Multiple

Computer Platforms, http://www.sanergy.com, 2001
[20] EMC Corporation, Celerra, http://www.emc.com, 2001

59

Building a Single Distributed File System from Many NFS Servers
-or-

The Poor-Man’s Cluster Server

Dan Muntz
Hewlett-Packard Labs

1501 Page Mill Rd, Palo Alto CA 94304, USA
dmuntz@hpl.hp.com

Tel: +1-650-857-3561

Abstract
In this paper, we describe an architecture, NFS^2, for uniting several NFS servers under a single
namespace. This architecture has some interesting properties. First, the physical file systems that make
up an NFS^2 instance, i.e., the file systems on the individual NFS servers, may be heterogeneous. This,
combined with the way the NFS^2 namespace is constructed, allows files of different types (text, video,
etc.) to be served from file servers (potentially) optimized for each type. Second, NFS^2 storage is
strictly partitioned—each NFS server is solely responsible for allocating the resources under its control.
This eliminates resource contention and distributed lock management, commonly found in cluster file
systems. Third, because the system may be constructed with standard NFS servers, it can benefit from
existing high-availability solutions for individual nodes, and performance improves as NFS servers
improve. Last, but not least, the system is extremely easy to manage—new resources may be added to a
configuration by simply switching on a new server, which is then seamlessly integrated into the cluster.
An extended version of this architecture is the basis for a completed prototype in Linux [5].

1 Introduction
NFS [1] servers are widely used to provide file service on the Internet. However, adding new servers to
an existing namespace is management intensive, and in some ways inflexible. When a new server is
brought online, all clients requiring access to the new server must be updated to mount any new file
systems from the server, and access rights for the new file systems must be configured on the server.
Additionally, the new file systems are bound to sub-trees of each client’s namespace.

The NFS^2 architecture allows standard NFS servers to be combined into a single, scalable file system.
Each NFS server is essentially treated as an object store. New servers added to an NFS^2 system
merely add more object storage—they are not bound to a particular location in the namespace. Clients
accessing the NFS^2 file system need not be aware when new NFS servers are added or removed from
the system. The system takes its name from the fact that NFS is being used “on top of” NFS—the NFS
protocol is being used to maintain object stores, and these object stores are combined into a single
distributed file system that is exported via the NFS protocol.

2 Architecture
Figure 1 shows one possible configuration for an NFS^2 file system.

60

Cm

I1 In

P1

S1

P2 P3 P4

S2 S3 S4

Pq

Sq

File and Namespace Data Partitions

Potential
“Intermediate Servers”

Partition Servers (NFS servers fronting extendable logical volumes)

Clients

LB

C2C1

Figure 1: An NFS^2 File System

Storage partitions, Pi, are exported to the other parts of the system via standard NFS servers, Si, also
called partition servers. For scalability of the individual partitions/servers, intermediate servers can be
introduced between the clients and servers. The intermediate servers accept NFS requests from the
clients, and transform these requests into one or more NFS requests to the partition servers.

The intermediate servers perform another important, and powerful, function. Each partition server is
used as an object store, but some entity must choose which partition is used for the creation of a new
object. In the trivial case, this placement policy could simply be round-robin. A slightly more complex
placement policy could choose a partition server based on resource balancing—choosing the partition
server with the most storage available to balance storage resources, or choosing the partition server
experiencing the least CPU load to do CPU load balancing. Even more complex placement policies are
possible. For example, if one of the partition servers is a slow, legacy machine, and there is some
knowledge of data access patterns, less-frequently-accessed data may be placed on the slow machine.
This concept could be extended to integrate tertiary storage into the NFS^2 file system.

We describe the architecture under the assumption that the intermediate server translation functionality
and placement policy are embedded in the partition servers and that clients issue requests directly to the
partition servers. An implementation based on this assumption would retain most of the benefits of the
complete system (possibly sacrificing some ability to scale with single-file “hot spots”), but would also
have some beneficial simplifications (e.g., reduced leasing overhead, fewer network hops, etc.).

3 Design Considerations
The most important concept behind the construction of the NFS^2 namespace is the cross-partition
reference. A directory residing in one partition may have children (files or directories) residing on
another partition.

61

There are a couple of alternatives for implementing cross-partition references in NFS^2. Directories in
most on-disk file systems are implemented as “files,” however these directories have implementation-
specific data and interfaces. If we are allowed to modify the NFS servers, directories can be
implemented using regular files in the underlying physical file system. While this adds some overhead
when compared to using the existing directory structures of the underlying file system, there are also
benefits. Directory files may use a variety of data structures (e.g., hash tables, b-trees, etc.), and can
surpass the performance of the typical linear list structure used in many systems [5]. More importantly
for our purposes, with directory files we can extend directory entries to support cross-partition
references, independently of the physical file systems. To achieve the goal of using unmodified NFS
servers, symbolic links can be used to construct cross-partition references. We first describe the system
in terms of directory files (for clarity), and follow this with a description of how the same functionality
can be achieved with symbolic links. Fault tolerance and correctness for cross-partition references,
without using distributed lock management (DLM), are addressed in another paper [7].

Another alternative is to store directories separately from files. Standard NFS servers are used to store
files while separate servers are used for the namespace (either using directory files, or an alternative
mechanism). Cross-partition references enable this separation of the namespace from the files. Servers
for the namespace could be NFS servers modified to support directory files, a database, or some other
construct.

The NFS^2 file system consists of user files and directory files. Both types of files exist as standard
files in their respective partitions—a user file, /usr/dict/words might be represented as the file
/abc/123 on partition P3, while the directory /usr/dict might be a file /def/xxx (containing
directory entries) on partition P4. An NFS^2 directory entry associates the user’s notion of a file or
directory name with the system’s name for the file/directory, the partition where the file/directory is
located, and any other relevant information. For example, some entries in /def/xxx could be
represented as:

 .:/def/xxx:P4
 ..:/yyy:P6
 words:/abc/123:P3

File handles passed to the client contain some representation of the system’s name for the object (file or
directory) and the partition where the object resides. This information is opaque to the client, but may
be interpreted by the load balancer (LB) to direct requests to the correct partition server. Alternatively,
the partition servers could be made the sole entities responsible for interpreting file handle information.
A request could be sent to an arbitrary partition server that interprets the file handle and may then have
to forward the request one “hop” (O(1)) to the server responsible for the object.

In the initial state, a well-known root partition server (say, P1) contains a file, e.g., “/root”, which
corresponds to the user’s view of the root of the NFS^2 distributed file system. The client mounts the
file system by obtaining a file handle for the /root file as a special case of the lookup RPC.

Let us consider how some operations are handled in this file system. A mkdir request from a client
will contain a file handle for the parent directory (pfh) and a name for the new directory (dname). A
switch function is used by LB to direct the request to the partition server (Px) where the new directory

62

will reside. The switch function implements an arbitrary policy for where new file system objects are
created (e.g., all video files might be placed on a “video server,” or the switch function may chose the
server with the most available capacity). Px creates a new file representing dname that has the name
dname′ in the physical file system served by Px. Px then issues a request to the partition server
responsible for the parent directory, Py (extracted from pfh), to add a directory entry: dname:dname′:Px
to the parent directory file (contained in pfh). If an entry for dname already exists, the operation is
aborted and dname is removed from Px. Otherwise, the new directory entry is added to the parent
directory file and the operation completes.

The communication between Px and Py could be implemented using the standard NFS and lock manager
protocols. Px first locks the parent directory file, and checks for the existence of dname. If no entry for
dname exists, it can issue an NFS write request to add the entry to the parent directory file. The
directory file is subsequently unlocked. Alternatively, this communication could take place via a simple
supplementary protocol that would allow the locking to be more efficient—a single RPC is sent to Py,
which then uses local file locking for the existence checking and update, and returns the completion
status.

File creation is essentially identical to mkdir.

The read and write operations are trivial (referring to the definitions from Figure 1):

write(fh, data, offset, length):

Ci sends the request to LB.
LB looks into fh and directs the request to the appropriate Sj.
Sj issues a local write call to the file specified in fh.

Read is similar.

To construct cross-partition references with symbolic links, we can build an NFS^2 cluster as a proof-
of-concept as follows. First, each partition is assigned a name (assume Pi, as in Figure 1). The NFS
servers then mount all partitions into their local namespace at locations /P1, /P2, etc. using the standard
mount protocol. Now, a cross-partition reference is created by making a symbolic link that references
the physical file through one of these mount points.

For the example:

words:/abc/123:P3

An underlying file, /abc/123, contains the data for the file, and resides on partition P3. The
namespace entry words is a symbolic link in its parent directory with the link contents:
/P3/abc/123. It is important to note that we are talking about systems on the scale of a cluster file
system, so the cross-mounting does not involve a “huge” number of servers. An extension to this work
[5] looks at expanding the architecture to a global scale.

63

4 Future Work
There are several areas requiring further investigation. The performance of the architecture in its
various possible incarnations (the symbolic link version, the directory file version, and others) must be
studied.

We also want to investigate the potential uses and performance implications of directory files.
Directory files were conceived for the NFS^2 architecture to address the problem of providing a single
directory structure over diverse underlying file systems, and the need for an easily extensible directory
structure. Such benefits may be useful for other file system research. Also, because directory files
allow the directory structure to be flexible, they can be used to investigate alternative data structures for
directories, alternative naming schemes, new access control mechanisms, and new types of information
that might be associated with files.

Due to the structure of cross-partition references, object-level migration should be relatively straight-
forward in NFS^2. Migration and replication are two more areas requiring further research.

5 Related work
There has been a significant amount of research and product development in the area of cluster file
systems [2,4,8]. Most are based on principles established in the VAXclusters [2] design. These
systems use distributed lock management to control access to shared resources, which can restrict their
scalability. NFS^2 partitions resources to eliminate DLM [5,7].

Frangipani proposed one of the most scalable DLM solutions in the literature [8]. System resources are
partitioned into logical volumes [3] and there is one DLM server dedicated to each volume. This
requires using two levels of virtualization: virtual disk and file system. NFS^2 resembles Frangipani in
its partitioning of the storage resources for improving contention control. However, NFS^2 uses one
level of virtualization allowing decisions for resource utilization and file placement to be made at the
file service level. Also, cluster file systems, including Frangipani, depend on their own, proprietary
physical file system. NFS^2 is a protocol-level service and can leverage diverse file systems for optimal
content placement and delivery. Nevertheless, NFS^2 is complementary to cluster file systems—a
partition can be implemented as a cluster file system and can be integrated into a broader file space.

Slice [6] is a system that also uses a partitioning approach, similar to NFS^2. Slice’s file placement
policies (small versus large files and a deterministic distribution within each class of files) are
implemented in µproxies—modules that forward client operations to the right partition, operating at the
IP layer. To make placement decisions, µproxies have to maintain a view of the server membership in
the system. In case of reconfiguration, the new membership information is diffused among the (possibly
thousands of) µproxies in a lazy fashion. As a result, resource reconfiguration in Slice is coarse-grained;
also, file allocation is static for the duration of an object’s life. In comparison, NFS^2 can extend the
traditional file system namespace metadata to achieve highly flexible and dynamic file placement and
resource reconfiguration. However, this requires extensions (even if minor) to the client access protocol.
Slice’s µproxy idea could be used to transparently intercept client-service communication and redirect it
to the appropriate partition server. In that case, µproxies will not need to maintain distribution tables;
instead, they will interpret the contents of the (opaque to the client) file handles to retrieve the location
of the server for each client request.

64

6 Conclusions
NFS^2 provides a mechanism for uniting NFS servers under a single namespace. It simplifies
management of multiple NFS servers by providing access to all servers through a single namespace (no
need for multiple client mount points), and by providing a transparent mechanism for the addition of
new servers as the system grows.

This system avoids distributed lock management, which has been a limiting factor in the scalability of
cluster file systems. NFS^2 supports heterogeneous physical file systems within the single namespace,
whereas other systems have relied on their own proprietary physical file systems. Support for arbitrary
placement policies to place files on certain servers allows a great deal of flexibility, including
placement of files on servers optimized for a given file’s content type, load balancing, storage
balancing, and others.

7 References
1. Sandberg, R., Goldberg, D., Kleiman, S., Walsh, D., and Lyon, B., Design and Implementation

of the Sun Network Filesystem, in Proc. of the Summer USENIX Technical Conference, Portland,
OR, USA, June 1985.

2. Kronenberg, N., H. Levy, and W. Stecker, VAXClusters: A closely-coupled distributed system.
ACM Tansactions on Computer Systems, 1986, 4(2): pp. 130-146.

3. Lee, E. and C. Thekkath. Petal: Distributed Virtual Disks. In ASPLOS VII, MA, USA, 1996.
4. Veritas Cluster File System (CFS), 2000, Veritas Corp., Mountain View, California.

http://www.veritas.com.
5. C. Karamanolis, M. Mahalingam, L. Liu, D. Muntz and Z. Zheng. An Architecture for Scalable

and Manageable File Services. HP Labs Technical Report No. HPL-2001-173 (7/12/2001).
6. Anderson, D., Chase, J., and Vadhat, A., Interposed Request Routing for Scalable Network

Storage, in Proc. of the USENIX OSDI, San Diego, CA, USA, October, 2000.
7. Zhang, Z. and Karamanolis, C., Designing a Robust Namespace for Distributed File Services, in

Proc. of the 20th Symposium on Reliable Distributed Systems. New Orleans, USA. IEEE
Computer Society, October 28-31, 2001.

8. Thekkath, C., T. Mann, and E. Lee. Frangipani: A Scalable Distributed File System. In 16th
ACM Symposium on Operating Systems Principles (SOSP), Saint-Malo, France, 1997.

High Performance RAIT

James Hughes, Charles Milligan, Jacques Debiez
Storage Technology Corporation

1 Storage Tek Drive
Louisville CO 80028-2129 USA

james hughes, charles milligan, jacques debiez@storagetek.com
Tel: +1-763-424-1676

FAX: +1-763-424-1776

Abstract

The ability to move 10s of TeraBytes of data in reasonable amounts of time are
critical to many mass storage applications. This paper examines the issues of high
performance, high reliability tape storage systems, and presents the results of a 2-year
ASCI Path Forward program to be able to reliably move 1GB/s to an archive that can
last 20 years.

This paper will cover the requirements, approach, hardware, application software,
interface descriptions, performance, measured reliability and predicted reliability. This
paper will also touch on future directions for this research.

The current research allows systems to sustain 80MB/s of incompressible data per
Fibre Channel interface which is striped out to 8 or more drives. A RAIT system looks
to the application as if it were a single tape drive from both mount and data transfer.
Striping 12 RAIT systems together will provide nearly 1GB/s to tape.

The reliability is provided by a method of adding parity tapes to the data stripes.
For example, adding 2 parity tapes to an 8-stripe group will allow any 2 of the 10
tapes to be lost or damaged without loss of information. An interesting result of this
research is that the reliability of RAIT with 8 stripes and 2 parities exceeds that of
mirrored tapes even though 8 mirrored tapes requires 16 actual tapes and 8 data tapes
plus 2 parity tapes only requires 10 actual tapes.

Keywords: RAIT, High Performance, Archive

1 Introduction

This paper describes the RAIT system as designed for the US DoE as a part of the ASCI
program. This system is designed to facilitate the long term archive of large quantities of
information in the face of potential media failures.

The requirements of the project are three fold,

� Ensure the reliability of large archives

65

� Compatible with the existing applications

� Transfer the data at a high data rate

The reliability of tape varies from manufacturer to manufacturer. At STK, our high
reliability 9840A tape devices have shown to have an average reliability of one permanent
read error every 20TB of data read. While this is significantly better than some other
vendors, this error probability is not zero, and can never be.

A probability of a read every every 20TB with a 20GB cartridge, means that a cartridge
can be read 1000 times between errors. In general, this is not a significantly high number,
but when combined with large multi-volume datasets (files that span and/or stripe out to
many cartridges), the effects are multiplied.

For example, a 3 TB backup to 9840A with 1.5:1 compression will require 100 car-
tridges with a native capacity of 20 GB. Simply because of the number of cartridges in-
volved, there is a 1 in 10 chance that there will be a permanent error in writing or reading
the data. Since any error destroys the backup or restore operation, the results are catas-
trophic to the data.

2 Other Methods

For completeness, we mention other RAIT systems and documentation.
First, although somewhat dated, the Storage FAQ [1] discusses the general issues of

RAIT and several vendor offerings. For commercial hardware offerings we find Ultera
[10]. For software offering we find Computer Associates [9].

In addition, many backup companies offer striping solutions, these include IBM’s HPSS,
Veritas and Legato [8, 11, 12]. These striping solutions can provide the performance that a
RAIT system provides, but does not add additional data protection. When using a striping
solution care needs to be takes because striping multiplies the probability of problems. Our
system focuses on solving the robustness problem of stripes tape making the result more
reliable than a single tape drive.

This paper is focused on the data protection and transparency of a full virtualized RAIT
system. We use the term “full virtualized RAIT” to mean a system that completely hides
all aspects of the RAIT system from the application. The application only sees a single
tape volume with a single volume serial number. The application issues a single ACSLS
tape mount and transfers data to a single tape drive [4, 2, 3].

3 Approach

If we compare RAID to RAIT, they are very similar except that tape is a removable media.
We have accomplished RAIT by adding parity (as in RAID), but we have extended this
to virtualize the removable media and to provide additional redundancy beyond the single
parity of RAID.

The approach that Storage Technology took for the ASCI RAIT project is to virtualize
the entire tape operation. By “virtualize” we suggest that the application’s view of the
operation need not be in full agreement with the reality of the operation.

66

In this system, the application thinks that it is mounting, writing or reading a single
volume from a library. In reality, the “virtual volume” does not exist and another group
of real cartridges contain the actual information and additional redundancy which contains
what the customer actually gets when the data is read.

The reality is that the single virtual tape mount may have resulted in up to 10 or more
real tape mounts, and the data that was transfered to the single virtual drive will have parity
added and spread to all the real drives.

In RAID-5, there is a single parity drive. Many customers have experienced multiple
failures on a single RAID stripe. In RAIT, multiple parities are created so that if there are
any multiple failures (up to the number of parity tapes) the data will be intact.

Just like RAID where the application sees no difference between a RAIT controller
and a non-RAID controller, the application that is requesting the RAIT tape mount and
writing or reading the data has no knowledge of the reality. In general this will allow any
application that reads or writes tapes to be able to write RAIT.

3.1 Hardware

All hardware RAIT Systems are designed to interpose a device between the host and the
physical tape library and drives. The device presents a virtual image of the virtual tape
and the other deals with “reality”. The STK device has 2 basic parts; a mount proxy and a
parity generation/checking data path.

3.1.1 RAIT Proxy

The virtual-to-real tape mount operations are accomplished by the RAIT proxy. This is the
device that understands the mapping between the virtual volumes and the real volumes. It
also manages the creating of virtual tape pools, reconstruction pools, and control of data
path.

The RAIT proxy has a database that contains the persistent information necessary to
associate the mapping of virtual volumes to the real physical cartridges. This is critical so
that applications that use the virtual volumes are hidden from this fact. This database is
mirrored to multiple locations and backed up. In addition, to aid in the transportation and
introduction of RAIT groups into other RAIT systems, and to act as a final fall-back to
ensure that this information can not be lost, this information is also written onto the tapes
as meta-data which is hidden from the user.

From the application point of view, it requests a mount from what looks like a standard
STK ACSLS mount service. This single volume that the application requested is translated
by the RAIT proxy to real volumes, and these real volumes are mounted.

This is a valuable feature in that it allows applications that only know about ”normal”
tape volumes to take advantage of RAIT. This completely parallels RAID where the client
hosts have no knowledge that the device is RAID.

Once the mounts are complete, the RAIT proxy initializes the data paths with infor-
mation on where the tapes are mounted, the number of data stripes and the number parity
stripes.

67

3.1.2 Data Path

Figure 1: Striping data

The data path stripes the data and creates or checks the multiple parity stripes. Figure
1 graphically shows the representation of how the data is striped and parity calculated.

In this figure, the data is described as a block of J words and is striped into I horizontal
groups. An additional prefix and suffix are added before and after and then the parities
are added above and below. In this case there are 5 parities, they are -2, -1, 0, 1 and 2.
There are no inherent limit to the number of parities. These parities are described by their
row/column slope.

The prefix and suffix contain zeros so that the end-cases of parities which extend be-
yond the start or end of the user data will have deterministic results. These zeros do not
really exist and are not stored on the media, but are included here to illustrate the parity
construction.���

calculation is simply the vertical line through the horizontal data stripes. This XOR
of the data is stored in the third from the bottom parity stripe. The other parities go through
the data and then are stored in their respective stripes.

You will also notice that the parities (other than
���

) are longer than the data. This data
is necessary to “bootstrap” the correction function, to keep the blocks independent. This
additional data is stored on the tapes. This does not represent a significant lengthening of
the parity data.

���
has an additional length of � ��� 	 words. If the blocksize of the tape is 1

MB using 32 bit words on an 8 way stripe, this will result in a 0.003% increase in the length
of the parity blocks over the data blocks. Since tape is a variable length block device, this
is not a significant factor.

An alternative (and a formal) description; a block of application data that is sent from
the host is divided into I stripes. Those stripes are sent to the parity hardware to create

68

multiple linearly independent parity stripes.
The parity generation is accomplished by the creation of vertical and various cross par-

ities. Each of the parities
��

are taken in order from a list ���������������������������������� ��!"!"!�# .
The data is described as a word $�%'& (where) is the stripe number and * is the offset.

��
 & (,+
-.
%0/21 $3%'& (�45%

Where if $ � & 6 is out of bounds, it is assumed to be 0.

3.1.3 Variable Configuration

The configuration of the RAIT volume is selectable. The volumes can be simply defined
as N+P where N is the number of data stripes and P is the number of parities.

An optional, and more exact description can be N+(P1,P2) where N is the number
of data stripes and P1 and P2 describe the number of parities when failures during write
operations are allowed. In this case, P1 is the total number of parities desired and P2 is the
minimum number of parities that must be present for the write to be successful.

A simple example: 6+(2,1) will mean that a write of a volume starts out with 8 devices
and that during the creation, one can fail and the overall write will be signaled to the host
as being good. P2=1 specifies that if there is not at least 1 parities written at all times, then
the host will be notified that the write operation has failed.

3.1.4 End of Tape Operations

As data is written, the first real tape device that reaches end-of-tape signals an end-of-tape
to the application that this virtual volume is now full. Many years ago, hosts needed to
know how many bytes can be written on a tape device. Modern host software assumes that
data sensitive compression is occurring on the tape device and no longer needs to know how
long a tape is anymore. Programs today simply write data until the tape says “enough”.

Before the data is written out to the drives, it needs to be rotated across the drives
because the parities are not as compressible as the user data. Parities are less compress-
ible because when two compressible pieces of data are XORed together, the result is less
compressible.

Care must also be taken to ensure that the parity stripes (less compressible) are not
written to separate tapes from the (more compressible) user data. Failure to do so will
result in the parity tapes always getting to end-of-tape first thus wasting the compression
on the data tapes. This is solved by rotating the data and parity stripes over the complete
N+P group.

3.1.5 Reconstruction

To eliminate as many errors as possible, we leave all the drive’s error recovery on at all
times. This means that all the data integrity features of the device are left enabled. On 9840
this means that Read After Write and full ECC are enabled.

69

If data can not be read or written correctly the drive notifies the RAIT controller. All
retries are used to try to make sure that this is not a transient error.

One important side effect is that, if the data shows up and the drive says there was no
error, it can be assumed to be correct. Conversely, if there is an error on read, we can just
assume that the data will never be readable and treat that block as missing. Since we know
which block is missing, then any one of the parities can be used to correct that stripe.

For instance, if a data stripe is missing and P0 is available, the simple parity of the valid
data stripes and the parity is the missing data stripe.

Multiple parities are more complicated. For example, if there are 3 missing data stripes
and three parities (P0, P1 and P-1) we perform the recovery as follows. Starting with the
“correction line” as the first word of each stripe we notice that the top missing stripe can be
corrected with the parity stripe going from left bottom to right top. This is because all the
words to the left are good (because the prefix is known to be zero) and all words above the
top missing stripe are (by definition) not missing. When we are at this case, we can correct
the first word of the top missing stripe. We then correct the bottom missing word in the
same manner with the other diagonal parity. At this time, there is one remaining missing
word and one remaining parity (P0). We can simply use P0 to correct the remaining word.
We can them move the correction line to the right by one word.

Subsequent words within this block can be corrected the same way because as we iterate
this from left to right, all words to the left of the correction line have been corrected. This
simple scheme can be enhanced to any number of errors as long as there are enough parities.
When there are more than 3 errors, then the correction line is no longer straight.

These errors correction techniques are discussed in [6] as a “burst erasure channel”. A
burst erasure is defined as an event where, if there is an error detected, an entire burst (block
in our case) is erased (in our case simply not returned from the device). To recover from
an error, we simply use the parity to recover the known bad data stripe. IBM introduced
the concept of “Crossed Parity”[7], and patents for further extensions to this have been
proposed by the authors.

3.1.6 Reconstruction performance

Since this is a burst erasure channel, if all bursts (stripes) arrive without the drive saying
there is an error, then we can assume there are no errors and simply reconstruct the user
data block without employing the parity hardware at all.

In the case where a single stripe is missing, the parity of everything but the missing
stripe is the missing stripe. We can employ the parity hardware to create the syndrome in
the same time as we took to create the parity in the first place. This allows us to correct a
single missing stripe with no performance penalty.

When multiple errors occur, we can use the parity hardware to create partial syndrome
for each word and then do the word by word iteration in software.

3.1.7 Additional Data Integrity checks

Provided that all the parity is not needed to correct missing data stripes, the controller can
do additional data integrity checks of the data.

70

3.2 Application software

In general, the application software does not need to understand the operation of the virtual
tape devices. The initial customer uses HPSS and the testing of HPSS is accomplished
without change to HPSS. Other software such as Veritas or Legato Backup software oper-
ates the same whether the tape device is RAIT (virtual) or real.

The one exception is in the area of job scheduling. If the job scheduling system manages
the tape drive allocation to ensure that there are adequate resources, this needs to take
into consideration that certain tape mounts will not require a single drive, but may require
multiple drives. This has been added as a feature to HPSS.

3.3 Performance

The performance of the RAIT system is limited by the speed of the data channel, parity
hardware and tape devices themselves. At this time, a 100MBytes/s Fibre Channel is used
to connect to the host devices. Fibre Channel can be reliably utilized at 80% of capacity or
80MBytes/s. The parity generator hardware operates at more than 100MBytes/s so that it
is not a bottleneck. The devices used are STK 9940 tape devices that have a raw speed of
9MB/s. This number is increased by the compression factor. If the user data is compressible
2:1, then the performance of the tape device will be 18MBytes/s.

A 5+2 RAIT system with 9940s operating with 1.8:1 compression can sustain 80MBytes/s
as a single virtual tape device being striped out to 7 physical tape drives.

3.4 Reliability

It has been shown that STK 9840s have a read error about every 20TB of data with a
cartridge size of 20GB. Since this is 1000 reads of a single cartridge, a very simple model
is to assume a probability of error of 7 +8�9� 4�: per tape operation and unrelated failures [5].

If we assume that a tape operation is a mount and unmount of a tape regardless of the
amount of data transfer, then this will be a conservative estimate and the actual reliability
should be significantly better than this.

The probability of at least one error for any group of tapes (stripes or just long volumes)
is the number of volumes (;) times the error 7�; . A 100-tape volume has an error probability
of �9� 4<1 .

A single RAIT virtual tape volume (=) with one parity per 6 volumes (6+1) will only
fail if 2 tapes fail. A simple model of this is the probability of 1 of 6 failing and then 1 of 5
remaining fail or =9>@?21A+CB�7EDF7 or =�>@?21G+H�JIK�9� 4�L .

A (6+2) system will only fail if 3 tapes fail. This is the probability of 1 or 7, 1 of 6 and
then 1 of 5 remaining fail or =9>@?21A+HMF79B�7EDF7 or =�>@?ONP+Q��!"�RIS�9� 4�T .
3.4.1 Striped RAIT Systems

Since it is still possible for the application to stripe the data, the application can be used to
stripe the data over multiple independent RAIT systems. For instance, 4 RAIT groups at
80MB/s will sustain 320MB/s or more than 1TB/hour.

71

A striped RAIT system U -wide will have an overall reliability of U�= . In the case of
13 (6+2) RAIT units wide the probability of failure is U�= or ��!VMWIX�9� 4�> . This shows that
the reliability of a 1GigaByte/s striped RAIT has an error probability of less than two in a
million probability of data loss due to unrelated failures.

3.4.2 Other Failure Modes

The analysis in this paper focuses on unrelated drive, and media failures. The performance
of the system in the face of related failures at the controller level is not considered. Gen-
erally, failures at the controller level do not effect the stored data, which can be read or
written once the controller is repaired.

3.5 Future directions

Storage Technology Corporation is in the process of creating a Commercial Off The Shelf
device for worldwide availability. STK is also creating a ”mirroring” capability so that
tapes can be created simultaneously at multiple locations with the same kind of single
virtual device image as RAIT. The performance of the system is also expected to increase
as customer systems and tape devices become faster.

3.6 Conclusion

This paper has discussed the method of creating RAIT. The primary goal of reliability is ac-
complished by adding parity information to the virtual volumes. Performance is increased
by striping the data. Further performance can be achieved by striping RAIT systems. In
the future this capability will be commercially available.

References

[1] R. Van Meter. comp.arch.storage FAQ
http://alumni.caltech.edu/˜rdv/comp-arch-storage/FAQ-1.html”

[2] M. Fisher. Redundant Array of Independent Tape: RAIT, THIC, October, 2000,
Bethesda MD.
http://www.thic.org/Agenda 1000.html

[3] G. Sobol, SAN Enabled RAIT/RAIL, Computing in High Energy Physics, CHEP’00
Padova Italy, Feburary, 2000.
http://chep2000.pd.infn.it/abs/abs c016.htm

[4] J Hughes, C. Milligan, J. Debiez. High Performance RAIT, Computing in High Energy
Physics, CHEP’01 Beijing, China, September, 2001.
http://www.ihep.ac.cn/˜chep01/paper/4-004.pdf

[5] R. Defouw, C. Milligan, and T. Noland, The Level of Data Protection in Redundant
Tape Arrays, Storage Technology Internal Correspondence, May , 2000

72

[6] W. W. Peterson and E. J. Weldon, Error Correcting Codes, 1961, John Wiley & Sons
Publishers.

[7] A. M. Patel, Adaptive cross parity code for a high density magnetic tape subsystem,
IBM J. Res. Develop., vol. 29, pp.546–562, 1985.

[8] R. W. Watson and R. A. Coyne, The parallel I/O architecture of the high-performance
storage system (HPSS), Proceedings of the Fourteenth IEEE Symposium on Mass
Storage Systems, IEEE Computer Society Press, September 1995, pp. 27–44.

[9] Computer Associates,
http://www.cai.com/products/san/saniti strategy.htm

[10] Ultera Corporation,
http://www.ultera.com

[11] Veritas Corporation,
http://www.veritas.com

[12] Legato Corporation,
http://www.legato.com

73

75

Conceptual Study of Intelligent Data Archives of the Future

H. K. Ramapriyan, Steve Kempler, Chris Lynnes, Gail McConaughy, Ken
McDonald, Richard Kiang

 NASA Goddard Space Flight Center
Greenbelt MD 20771

Sherri Calvo, Robert Harberts, Larry Roelofs

Global Science and Technology, Inc.

Donglian Sun
George Mason University

Ramapriyan@gsfc.nasa.gov

Tel: +1-301-614-5356
Fax: +1-301-614-5267

Abstract

A conceptual architecture study is under way to address the problem of getting the most
scientific value from the large volumes of Earth and space science data that NASA
expects to accumulate in the future. This involves efficient storage and access, but goes
beyond that to facilitate intelligent data understanding and utilization through modeling
realistic virtual entities with predictive capabilities. The objective of the study is to
formulate ideas and concepts and to provide recommendations that lead to prototyping
and implementation in the period from 2010 to 2020. The approach consists of the
definition of future scenarios and needs for data usage in applications (in consultation
with scientific and applications users), projection of advances in technologies, and an
abstraction of an intelligent archive architecture. Strategic evolution is considered in
various areas such as storage, data, information and knowledge management, data ingest
and mining, user interfaces, and advances in intelligent data understanding algorithms.

1. Introduction

NASA’s collections of Earth science data have more than quadrupled in volume since the
launch of the Terra satellite in December 1999. At the end of September 2001, NASA’s
Earth science archives contained over 1,000 terabytes of data and are currently growing
at the rate of about 2.8 terabytes per day. Other agencies (e.g., NOAA and USGS) also
have large and growing archives of Earth science data. The volumes of Earth science
data held by NASA, NOAA and USGS are expected to exceed 18 Petabytes by 2010.
Significant increases are expected in the data volumes in space science as well. For
example, planned synoptic sky surveys in astronomy could produce 10 Petabytes data per
year.

76

In addition to the large data volumes, there are multiple challenges in managing and
utilizing them:

• Data acquisition and accumulation rates tend to outpace the ability to access and

analyze them.
• The variety of data implies a heterogeneous and distributed set of data providers that

serve a diverse, distributed community of users.
• Human-based manipulation of vast quantities of archived data for discovery purposes

is intellectually overwhelming and certainly cost prohibitive.
• The types of data access and usage in future years are difficult to anticipate and will

vary depending on the particular research or application environment, its supporting
data sources, and its heritage system infrastructure.

Increased hardware capabilities partially mitigate the data access problem. However,
adding “intelligence” to the data management and utilization process is essential to
automating the end-to-end data lifecycle in order to reduce the burden on data producers
and archivists and provide the greatest value to the nation for the data collected. Thus,
Intelligent Data Archives here are viewed not just as a set of permanent repositories of
data, but also as a suite of services that facilitate the use of data and deriving information
and knowledge from them. Therefore “intelligence”, in various embedded roles, means
the computational transformation of bits into information and knowledge (processing
sensory data into models), the ability to automatically act appropriately to complex
dynamic conditions (operations automation), and ability to facilitate human interactions
with digital resources (semantic management).

A conceptual architecture study is under way to address the problem of efficient access to
and effective utilization of the large volumes of data that NASA expects to accumulate in
the future. The study is sponsored by NASA’s Intelligent Systems Program, and
specifically the Intelligent Data Understanding technical area within the program. The
intention of the study is to develop ideas and concepts and to provide recommendations
that lead to prototyping and implementation in future years. As such, it is not constrained
by the need for operational implementation in the near future (e.g., two to five years).

The approach to this study consists of the characterization of future scenarios and needs
for data usage in applications (in consultation with scientific and applications users),
projection of evolutionary/revolutionary advances in technologies, and an abstraction of
an intelligent archive architecture. These steps will lead to a strategy toward the
formulation and development of conceptual architectures for intelligent archives. The
analysis is used to identify what kinds of intelligent processes are both desirable and
feasible, and determine where their application might most effectively drive down costs
and enable new applications and research, given anticipated advances in technology.
Strategic evolution is considered in various areas such as storage, data, information and
knowledge management, data ingest and mining, user interfaces, and advances in
intelligent data understanding algorithms.

77

The following section provides a brief discussion of the preliminary abstracted
architecture obtained using this approach. Section 3 presents a description of scenarios
and user needs. Section 4 covers projections of evolutionary and revolutionary changes
in technology. Section 5 provides a set of recommendations in the form of a road map
leading towards intelligent archives supporting intelligent data understanding and
utilization.

2. Abstracted Architecture

The abstracted architecture represented here is defined without regard to distributed or
centralized nature of implementation and is considered purely from the point of view of
the functions that need to exist to support the types of usage scenarios analyzed in section
3. It is possible that with a broader set of scenarios, we will need to identify additional
functions in a later version of this abstraction. The functions of an intelligent archive are
more stable than the architectures and technologies used to implement them. By
abstracting elements and processes into functional elements, we can explore application
strategies of technologies and system resources for future intelligent archives.
However, it is first useful to provide our definitions for data, information and
knowledge, as these entities are key to the abstraction of the architecture. These are not
general definitions, but rather somewhat specific to the domain of scientific research.
• Data: output from a sensor, with little or no interpretation applied.
• Information: a summarization, abstraction or transformation of data into a more

readily interpretable form.
• Knowledge: a summarization, abstraction or transformation of information that

increases our understanding of the physical world.

Future intelligent archive architectures (see Figure 1) manage these entities with such
functional elements as:

• Models and Intelligent Algorithms

- Consist of models of sensors, resources, data, information, knowledge, and
application domain entities (e.g., farm)

- Include models that exist at multiple levels, ranging from detailed sensor models
to models of an entire application domain (e.g., global models in the case of Earth
science)

- Support human understanding of the objects and processes that make up a virtual
digital entity and allow users to update the knowledge about the domain as new
discoveries are made

• Flow and Feedback Loops
- Control performance of all other functional elements
- Include mechanisms that construct, organize, store, update, manage, and provide

essential operational services
- Support self-optimizing operations

• Virtual entity
- Consists of a representation of the data, knowledge, and processes involved in an

application domain

78

- Provides a context for ingesting, organizing, and managing data and information
for the real world entity it represents

- Allows interrogation of past, present, and projected future events, as well as
“what if” analyses

• Intelligent information and knowledge extraction
- Facilitates the transformation of data into information and useful knowledge
- Automates mechanisms that extract meaning from data and therefore leverage the

value of all data in the process
- Supported by models in the knowledge base, which provide a basis for

understanding the data
• Intelligent data production, management and archiving

- Consists of production, persistence, and active management of valued massive
data assets

- Automates efficient data management mechanisms supporting knowledge-
building enterprises in the face of an overwhelming “tidal wave” of data

- Must dynamically manage high volume inputs from a diversity of observational
sensors, converting them into quality usable data products

- Manages storage close to sensors such that data can be processed locally and
passed on to the virtual entity as needed

• Intelligent sensors
- Are responsible for observations and measurements taken from nature and are the

raw ingredients for data
- Operate from various platforms such as satellites, aircraft, balloons, and in situ

constructs
- Have capabilities for performing autonomous functions and also interact with

other sensor systems and external functional elements
- Include storage, management and processing resources that are part of the overall

archive
- Are modeled in the context of the knowledge base and can support collaborative

operation by supplying processing and storage resources when they are not
needed locally

- Are expected to become an integral part of an archive as the architecture becomes
more distributed. Here the archive would control sensor data collection based on
data needs and would use sensor resources to perform its functions

79

Figure 1: Abstracted Architecture for Intelligent Archives

Using this abstracted architecture to construct an intelligent data system would require a
number of design decisions regarding how these elements and entities are represented,
such as whether data are represented as bit streams, files, database records, or some other
entity. Other decision points concern the relationships among entities, infrastructure to
support and connect the various elements, and various optimization schemes. There is
much ongoing development in the area of data system intelligence today, such as grid
computing, distributed data mining, mobile agents etc. However, because one of the
main goals of the abstracted architecture in this study is to aid future research
programmatics, the key challenge is to devise an architecture that can be "mapped" into
ongoing research and development without being limited to a single architecture
evolutionary path.

3. Scenarios and User Needs

We are using a scenario-based approach to the development of futuristic conceptual
architectures that enable intelligent data understanding of massive data volumes.
Scenario-based approaches are used to drive clear and complete pictures of end-to-end
interrelationships among data and information, consumers, data providers, value-added
information services, data archives, and data acquisition missions [1,2]. Also, scenario
development uncovers a range of requirements for services and capabilities that can be
mapped to existing and future technology application. Consequently, forward looking,

Virtual Entities
Applications

Data-to-Information

Observation-to-Data

Resources: Computing,
Storage, Communications

M
od

el
s

an
d

In
te

lli
ge

nt
 A

lg
or

ith
m

s

Fl
ow

 a
nd

 F
ee

db
ac

k
Lo

op
s

Intelligent Data Production,
Management, Archiving

Intelligent Information and
Knowledge Extraction

Intelligent Sensors

Knowledge Enterprise

Knowledge-to- system/process intelligence

80

tangible and imaginative Intelligent Data Archive (IDA) system application scenarios can
be factored into an architectural framework with descriptions of supporting technology.

The scenarios are oriented to an end-user perspective. Scenario descriptions identify
"actors" or involved stakeholders and illustrate dependencies among them within an
enterprise context. By extension this helps to clarify requirements for corresponding
system components and in identifying challenges to be addressed.

Applications scenarios lead to requirements, requirements have implications on
technology, and advances in technology affect the evolution of applications. By
observing this feedback process, we can characterize several futuristic scenarios. In
addition, such a strategy allows the architectural process to adapt quickly to new and
evolving scenarios and technologies.

A variety of contexts for possible scenarios have been identified with which to explore,
understand, and refine requirements for the IDA architecture. Examples of candidate
scenario contexts are:

• Ecological forecasting
• Precision agriculture
• Natural events and hazards (e.g., volcanoes, earthquakes, hurricanes, floods, fires)
• Skilled (10 – 14 day) weather forecasting
• Space weather
• National Virtual Observatory

Of these, in the initial phase of this study, we have used the precision agriculture and
precision weather forecasting contexts and developed two scenarios.

3.1 Precision Agriculture

The precision agriculture scenario is concerned with the scope and parameters of a farm
employing high-resolution Earth science data. The farm, which constitutes the virtual
digital entity in this scenario, is characterized as a relatively small spatial area
(considered in acres) for agricultural products suited to regional ecological, weather, and
growing constraints.

The “digital farm” concept interrelates ideas about digital technology, digital information,
GIS, and human-machine interfaces. We explored potential future requirements and uses
of quality high-resolution geo-spatial data employed in precision agriculture. The
information resources needed represent the consequence of interoperating services, value-
chain processes, automation, and filtering of data of specific relevance to the farmer.

Information-intensive support services helpful for crop planning, cultivation and
harvesting include current conditions monitoring, histories and time series studies,
trends/risks analysis, prediction, and forecasts, “what-if” investigations, and outcome
comparisons. Detailed information about land, weather, water, agriculture markets, prior

81

yields, agri-chemical options, seeds, etc. are useful for crop planning and planting. High-
resolution information is helpful to monitor, assess risks, and make decisions about
appropriate interventions to maintain crop health. Similarly, to maximize yields,
decisions about harvest timing require information about current and future conditions
(e.g., local weather, soil moisture, crop maturity). Remotely sensed information about
farm assets, including information collected from the farm about outcomes of plans,
cultivation techniques, and harvests, is integrated within a digital farm for long-term use.
In all cases it is important that the information be provided to the end-user with
confidence estimates.

To make sense of all this information, the digital farm concept includes a digital assistant
that works on behalf of the grower and is very intuitive and simple to use. The digital
assistant is available from any interface (workstations, mobile devices) from within the
house, farm buildings, vehicles, or even the combine. Interaction with the digital
assistant can be conducted by natural language either via voice or keyboard.

The digital assistant can interpret, broker, and fulfill requests for information and services
from the virtual entity both dynamically and autonomously. In this scenario, the virtual
entity is a digital wheat farm that contains encyclopedic farm-relevant information
ontologically, spatially, and temporally organized. The digital farm keeps its information
stores about soil, crop, weather, and moisture conditions constantly updated. It interfaces
with external inputs of data and information sources as well as with farm-specific sensor
inputs. These functional interfaces are crucial to pooling farm-relevant data from raw
data sources such as primary archives and agricultural services.

The digital assistant can produce different views of this information by summoning an
array of functional services. These services can be invoked and combined with an
existing farm state model to produce a virtual 4-D representation of the entire farm that
the grower can inspect from his or her office or combine cab. The virtual farm serves as
an interactive reference of farm-specific assets integrated with historical, current, and
modeling information. Views of the farm can be summoned to within a square meter
with variable time series. Types of information range from historical to actual current
conditions to what-if scenarios cast into the future. Because the grower’s digital farm
can “learn” from his or her queries and interests, the content and services it provides
adapt with change and specificity over time.

Most of the machinery on the farm also interacts with the digital farm information
services. Autonomous and semi-autonomous machines that plant, cultivate, and harvest
crops are precisely controlled with a combination of GPS, distributed functions, and data
from the digital farm. Optimal applications of seeds, fertilizers, and chemicals can be
controlled and recorded via wireless digital farm services. Similarly, data taken from the
field during cultivation and harvesting can be relayed to the digital farm as input for
archiving and further use. Together, the estimated levels of data usage in this scenario
approach 650 GB/year for a 1000 acre farm (275GB/year for subset data). Extrapolating
the subset data volumes to 600,000 acres of Central Valley agriculture zone in California
implies a potential distribution of 165TB/year.

82

3.2 Skilled (10-14 day) Weather Forecasting

Predicting future weather conditions over a particular region requires accurate data and
knowledge about atmospheric forces, physical parameters, boundary conditions, and the
interrelated nature of the atmosphere to the physical Earth system. While future
knowledge will remain incomplete, scientific processes and visionary methods for
improving that knowledge promise more accurate forecasts of atmospheric behaviors as
technologies and sensing systems evolve. However, the accuracy of weather predictions
tend to decay rapidly as a function of time due to the inability of prediction systems to
compensate for noise generated by the chaotic nature of the science, a lack of precise
initial conditions and the non-linear complexities of weather.

The weather prediction scenario we considered involves testing a 4-D model of the mid-
Atlantic region of North America while studying a developing weather condition. The
archival system includes the forecast model and the sensor systems used as input. The
strategy used in the forecast scenario is to link the sensor systems with the model such
that the archive drives the sensor data collection process. . These sensor systems act in
concert, as a web of connected, inter-communicating sensors ("sensor web") [3].

As the system collects data, it creates an initial forecast state that it uses at a future time
to compare against actual sensor data. The forecast from the model and the sensor data
are compared, and model errors identified. The forecast model is then corrected and a
new future state created. This cycle occurs periodically based on forecasting
requirements. Employing this closely coupled sensor model process allows short term
and long range forecasting with minimal error.

From the scientists’ perspective, planning sessions are conducted with an interactive
visualization interface equipped with collaborative and immersive human-machine
technology. Team members have the option to meet virtually via their workstations or in
one of the research center’s hypermedia tele-immersive conference rooms. In the tele-
immersive room, the scientists plan their research forecasts by summoning a vivid
holographic 3-D projection of the Earth, pointing to the region of interest, zooming in,
and accessing projections of scaled real-time weather conditions.

The scientists cycle through several current satellite views of the region selected from a
list and scan each view. Next they request views of the latest graphics and values for
temperature, pressure, humidity, and winds superimposed over the satellite image slightly
above the defined region on the global reference projection. In order to assess the whole
virtual picture of the weather condition, the team requests that the system detach the
selected region from the reference globe and project it as a cube presenting a 3-D
visualization of the weather conditions to an altitude of 25,000 meters. By rotating the
cube the researchers inspect the sensor grid sensitivities over the region from every angle.

The team next decides to run one hour, one day, five day, and ten day forecasts of
weather for this region using the current operational model, adding some custom-selected

83

inputs from a sensor array pick-list. After a minute, the results are ready to be displayed
in the same virtual region cube space. The team studies each forecast display by a variety
of interactive real-time commands (by voice, gesture, and keyboard). They explore the 4-
D visualizations by varying the temporal resolution, zooming spatial areas/volumes to
inspect details, requesting displays of simultaneous analysis result visualizations, and
selecting predicted parameters for further comparative analysis. Some team members
perform dynamic what-if prediction scenarios comparing what the system generates with
their own hypotheses.

With this experience the team then formulates a test of their beta version model using
insights gained from the immersive collaborative session. Several on the team notice
that higher resolution remote sensing values are needed in certain areas of the region to
accurately predict future changes of the pending weather condition. This might accord
with the deviation of the standard model from theoretical expectations after one day.
Furthermore, there is team consensus that coupling their beta model with selected
components of the standard model would elucidate new dependencies and parameters
crucial to accurate predictions. Scientist-provided specifications for this new research
configuration are then interpreted, translated, brokered, and automatically tasked by the
system.

In the final episode of this scenario the team studies the emerging weather phenomenon
through virtual projections of real-time information and various combinations of modeled
predictions. For the modeling portion of the research, the team observes how the
standard model self-adjusts its forecasts as a function of near-real time automated
comparison of actual versus predicted parameters. When the predicted varies too much
from the actual, new initial conditions are set. This continually keeps the predictive
accuracy on track for the near term, but progressive adjustments of the model are
required. The standard model in this scenario has intelligence applied so it monitors its
own performance. With access to a knowledge base, the model may also pinpoint
components to be modified either automatically or by human intervention.

In parallel with this modeling activity, the team custom-configures its beta version model.
The team includes a system request that re-tasks the sensor web to gather highly detailed
inputs for a critical area of the study region, to generate new forecasts. The sensor web
schedules and promptly complies with the request, providing critical detailed data for the
beta model to process.

Ten days after the start of the research event, the team is able to conclude from their
findings that new knowledge was gained about the rare weather condition. Furthermore,
comparisons of performance and outcomes between the beta and standard models
identify strong points in the beta model responsible for improving the accuracy of overall
forecasts. Validation of these findings leads to the promotion of specific beta version
components and two external model linkages to the standard model, adding a new
phenomenon to the knowledge base with additional predictive power.

84

Making the above vision possible obviously involves developing new observation sensor
systems as well as innovative techniques for data management and utilization. It is
anticipated that improvements to existing capabilities combined with evolving
infrastructures and innovative research technologies can enable skilled weather forecasts
of ten to fourteen days by 2025 (current forecast predictive skill is five to seven days) [3].
Skilled forecasting goals such as this require quality, mixed-resolution observations and
data acquisition systems; very rapid processing of observations; complex data
assimilation strategies; predictive modeling strategies and algorithms; and powerful
technology infrastructures for archiving, distribution, and interactive visualization. An
initial assessment of expected optimized global data volumes covering required
parameters, temporal/horizontal/vertical resolutions, and vertical measurement layers
yields an estimate of about 20TB/day by 2025.

3.3 Empirical Observations

While futuristic scenarios project the needs for research and applications, empirical
observations of data access and usage patterns provide a base state and historical trends.
They also give hints on how these patterns may change in the future. The access patterns
are a function of the requirements of various users and applications as well as the state of
technology. The term technology here includes both hardware and software. For
example, existence of faster hardware promotes the use of data mining software, which in
turn allows different and more useful forms of access from the archives than is currently
possible. As visualization tools, network bandwidths, and desktop computing capabilities
increase, new requirements may emerge in accessing archived data.

In the initial phase of this study, we have studied patterns of users’ access at the Goddard
Distributed Active Archive Center (DAAC) since a record exists starting from the
DAAC’s inception in 1994. More observations at other DAACs and other types of data
centers would be useful to provide a broader insight to access patterns. Some of the
questions to be addressed by such empirical observations are:

• Should data products be processed routinely and stored for future distribution, or
should they be produced only when a user or an algorithm requests them?

• For data-intensive algorithms, should the data be moved to the software, or the
software to the data?

• Should architectures be developed primarily based on average data access
requirements or peak requirements, and how can peak requirements be
characterized?

A key capability implicit in the term Intelligent Data Archive is an awareness that
extends beyond the data. While we commonly think of this awareness in its “operational
intelligence” context (e.g., resource management, autonomous data gathering), an
intelligent archive should also have “scientific intelligence,” i.e., the higher-level
knowledge that is derived from the data. Clearly, intelligent archives that include models

85

have some higher-level knowledge about the data. Beyond that, a wealth of knowledge is
published in scientific journals. Studying the connection between data in archives of
today and the scientific knowledge derived from them will provide valuable hints for the
design of future intelligent archives that embed knowledge with data. This initial phase
of study includes a “proof-of-concept” attempt at closing the data-knowledge loop using
automated (and semi-automated) methods to link datasets from the Goddard DAAC with
scientific knowledge resulting therefrom as expressed in publications (limited to those
available electronically). Some of the difficulties encountered here provide valuable
lessons in current shortcomings in the world of data archives and electronic publication,
which offer opportunities for future work.

4. Technology Evolution/Revolution

In the development of data and information systems over the last ten years, significant
progress has been made in several areas. These areas include: handling large volumes of
data at high rates, distributed computing, archiving and distribution, data and metadata
standards to facilitate system interoperability and provision of services such as subsetting,
and user interfaces.

In the Earth science domain, this progress is exemplified by NASA’s Earth Observing
System Data and Information System (EOSDIS) [4] with its distributed set of DAACs
and Science Investigator-led Processing Systems (SIPSs), the NASA-initiated federation
of Earth Science Information Partners (ESIPs) [5], and the international Committee on
Earth Observing Systems (CEOS).

On a more general level, the Global Grid Forum and NASA’s Information Power Grid
[6] represent efforts to develop persistent networked environments that integrate
geographically distributed supercomputers, large databases, and high-end instruments.
These resources are managed by diverse organizations in widespread locations, and
shared by researchers from many different institutions. Within the Global Grid Forum,
the Jini activity [7] is chartered to address the need for a grid framework to support both
resource and service discovery, in an environment in which these resources and service
providers may enter and leave the grid dynamically, and where diverse protocols are
expected to exist.

It is expected that near-term archiving systems will arise from these efforts as well as
several commercial developments in hardware and software technologies. We envision
that over the longer term, such “grid” infrastructures will evolve into a finer-mesh,
perhaps self-organizing “fabric” as computing and communications become increasingly
ubiquitous.

The evolution of (and revolutions in) technology over the last twenty-five years
demonstrates the difficulty in predicting the technologies that may be available ten to
twenty-five years from today. However, a study of existing forecasts by well-known
scholars in various areas relevant to data access and management is useful in
conceptualizing new architectures for IDA.

86

Potential technology drivers include processors, microelectronics, nanotechnology,
biotechnology, sensors, intelligent systems, communications, and user interfaces. In each
of these areas, advances are being made that will have a dramatic impact on future
archive architectures and functionality. In the hardware technology areas, the cost per
unit capability has been decreasing rapidly and is expected to continue to do so. The
implication of this on the end-to-end data management process and data utilization is that
it enables implementation of a number of services that have heretofore been limited by
hardware costs and encourages experimentation and advances in software techniques.
Advances in techniques resulting from research in intelligent systems (including
intelligent data understanding) sponsored by NASA and other organizations become
suitable for incorporation into the overall data management and utilization process.

4.1 Advances in Storage Technologies

Today we are witnessing the rapid progress and convergence of the fundamental
technologies that make up archiving: storage, computing, and communications.
Traditionally, digital storage demands have grown at or beyond 60 percent annually.
Over the past several years, growth has exceeded 100 percent per year for Internet and e-
commerce applications. Data storage functions have undergone an evolutionary change
over the past ten years, and are now commonly performed by smaller high-performance
disk drives implementing high-availability RAID storage coupled with more capable
archiving software. In addition, magnetic tape technology is continuing to increase in
capacity and speed. On the other hand, optical storage now seems more oriented toward
the entertainment market. Both storage area networks and network-attached storage
(SAN and NAS), along with high-speed optical communication, have fundamentally
reshaped the traditional storage model. In addition, SAN and NAS archiving strategies
have separated storage from being dedicated to any one server and refocused architectural
strategies to implement a union of storage devices interconnected by high-speed optical
networks.

Even in the near future (i.e., the next five years), the costs per unit of computing, storage,
and bandwidth are expected to continue their rapid decline. The historic trend has been
that increases in requirements have kept pace with the reductions in per unit cost to
maintain roughly the same annual expenditures for hardware. However, in general, the
value of an archive system will move from the hardware to the management and
utilization of the data. These are what an intelligent archive should aspire to do as
performance and functionality increase, especially in a distributed architecture.

Currently, NASA uses both magnetic disk storage (for on-line access to relatively
moderate data volumes) and tape storage (for long-term storage and access to large
volumes.) The amount of data available on disk has been increasing as disk storage
capacity has increased exponentially over the past ten years (over 60 percent annually
since 1992). Indeed, some predict that magnetic disk storage will become more cost
effective in coming years even for large volumes, as magnetic tape densities have not
been increasing so fast as disk. However, while online storage capacity has increased,
our ability to access data has not kept pace because input/output performance has only
increased linearly [8]. Magnetic recording for both disk and tape will continue to grow at

87

about 60% annually until the physical barrier (known as the super-paramagnetic limit) is
reached.

4.2 Paradigm Shifts

It is also expected that as a result of scientific advances or fundamental limits of nature,
paradigm-shifting revolutionary events are likely over the next twenty-five years. For
example, quantum mechanics will play an ever-increasing role because it involves the
performance of all microelectronic devices and the creation of molecular and atomic size
tools. Today’s smallest transistor etchings span a mere 130 nanometers. The expected
quantum dimension limit for microelectronics is approximately 25 nanometers, where the
laws of quantum physics allow electrons to transition across semiconductor gates even
when the gates are closed. In other words, the basis for all modern computing
technologies will run into a “brick wall.”

The effects of these paradigm shifts are illustrated in Figure 2. In the pre-paradigm shift
era, we may have extensions to the architectures of today, with increases in the speed and
ability to serve data and information to users. However, in the post-paradigm shift era,
the nature of the entire end-to-end system could undergo revolutionary changes. This
implies that in conceptualizing IDA architectures, it is useful to think in terms of
functional capabilities and their necessary interactions and interfaces without being
constrained by today’s limitations on the locations of such capabilities.

88

89

5. Recommendations and Future Work

At this stage in our study, we have a set of recommendations shown in the form of a
preliminary roadmap to move from archive organizations for traditional data access to
intelligent archives that facilitate and take advantage of intelligent data understanding.
This roadmap is shown in Figure 3. As shown in this figure, the steps leading to an
intelligent archive involve obtaining a better understanding of the following sequence of
items:
• Current data access and archiving
• Future data access and archiving trends
• Future scientific applications
• Future enabling technologies
• Roadblocks involved in the formulation, development, and building of an intelligent

archive
• Costs involved in formulating, developing, and building an intelligent archive.

There are several areas for further, more detailed, exploration as we continue this study:

• More Scenarios
- It is important to have sufficient scenario diversity to avoid biasing the architecture.

Thus, we plan investigation of additional science and applications scenarios in the
areas of space science, ecological forecasting, and natural hazards forecasting.

• Specialized Technology
- The initial investigation began with surveying general technologies, such as

computing and networking, to determine how they might drive or enable intelligent
data understanding. However, there are several areas of more specialized technology,
particularly in the area of software, which may be equally important as drivers or
enablers. These include areas such as IP-in-Space (enabling a seamless space-ground
data system) as well as the various data mining, fusion and visualization technologies
being developed as part of NASA's Intelligent Data Understanding program.
Advances in science and modeling algorithms are another fertile area.

• Further Architectural Definition
- As the investigation of new scenarios and specialized technologies advances, these

should allow further definition and clarification of the IDA architecture. This in turn
should promote further definition of the key architectural issues, challenges and
trades, which represent an important input into research directions.

90

-

91

6. Acknowledgements

This study was funded by the Intelligent Data Understanding area of NASA’s Intelligent
Systems Program. Views and conclusions contained in this paper are the authors’ and
should not be interpreted as representing the official opinion or policies, either expressed
or implied, of NASA or the U. S. Government. The authors would like to thank George
Serafino of NASA Goddard Space Flight Center, Kwang-Su Yang of George Mason
University, and Randy Barth and Jean Bedet of SSAI for their help with empirical
studies, and Lara Clemence of GST for editorial assistance.

References

[1] T. Quatrani and G. Booch. Visual Modeling with Rational Rose and UML, (Boston
MA: Addison-Wesley, 1998)
[2] Lockheed Martin Advanced Concepts Center and Rational Software Corporation.
Succeeding with the Booch and OMT Methods: A Practical Approach, (Boston MA:
Addison-Wesley, 1996)
[3] M. Steiner, R. Atlas, M. Clausen, M. Kalb, G. McConaughy, R. Muller, M. Seablom,
“Earth Science Technology Office (ESTO) Weather Prediction Technology Investment
Study,” NASA Goddard Space Flight Center, October 5, 2001
[4] G. Asrar and H. Ramapriyan, “Data and Information System for Mission to Planet
Earth,” Remote Sensing Reviews, 13 (1995) 1-25.
[5] The Federation of Earth Science Information Partners, http://www.esipfed.org/
[6] W. E. Johnston, et al. “Information Power Grid,” NASA Ames Research Center.
Available at
http://www.ipg.nasa.gov/aboutipg/presentations/PDF_presentations/IPG.AvSafety.VG.1.
1up.pdf
[7] Global Grid Forum. “Charter of the Jini Activity Working Group.” March 2001.
Available at http://www-unix.mcs.anl.gov/gridforum/jini/charter.pdf
[8] Fred Moore. Storage INfusion. Storage Technology Corporation, 2000.
[9] J. Gray and P. Shenoy. “Rules of Thumb in Data Engineering,” Redmond, WA:
Microsoft Research Advanced Technology Division, December 1999 (Revised March
2000).

93

Storage Issues at NCSA: How to get file systems going wide and fast
within and out of large scale Linux cluster systems

Michelle L. Butler

National Center for Supercomputing Applications (NCSA)
605 E. Springfield Ave
Champaign IL 61820

mbutler@ncsa.uiuc.edu
Tel: +1-217-244-4806
Fax: +1-217-244-1987

Abstract
This paper will discuss the history of storage at the National Center for Supercomputer
Applications (NCSA) over the last fifteen years from inception to a four hundred terabyte
archive. The paper discusses supercomputing requirements, hardware and software
configurations, and the evolution of data management at NCSA. This paper also
discusses the strengths and weaknesses of NCSA’s different storage strategies, and gives
a detailed discussion of the current system and how it is being evolved to meet the
requirements of the TeraGrid computing systems, and large-scale Linux clusters.

1 Introduction
As NCSA, compute power has increased over the years, and so has the mass storage
system to keep up with the ever-increasing rate at which data is produced. The NCSA
mass storage system started in 1986 with thirty-six gigabytes of disk, a dual processor
Amdahl performing twenty MIPS, with fifteen megabytes memory, and a single network
adapter in the form of a 1.5 megabits Hyperchannel connection. The system has evolved
to a single system configuration of sixteen 250MHz processors, twelve gigabytes of
memory, three Hippi and six GigE network interfaces, and two terabytes of disk for
overall I/O performance of two hundred megabytes per second.

2 History of Mass Storage at NCSA
In 1986, the first mass storage system at NCSA was an Amdahl running the Common
File System (CFS) software package originally developed by LANL. This system was in
production from 1986 to 1991 at NCSA, and served an evolving array of supercomputers
from NCSA’s original Cray XMP, to a Cray2, and a CRAY YMP. Access to mass
storage was through a CFS client running on the Cray supercomputers. The data was
staged to the Amdahl’s disk cache, and then transferred through a proprietary protocol to
the compute engine’s disk. The only access to the mass storage system was through the
Cray CFS client. Disk space on the Cray systems was purged after jobs completed, so
users were responsible for storing files they wished to retain. The average file size was
skewed by CFS’s requirement to break data into chunks of two hundred megabytes. Files
could not span tapes, and two hundred megabytes was the maximum that could be placed
on the 3480-tape technology employed. All tapes were manually mounted, and redundant
copies of every tape were made for off-site disaster recovery. Users began in later years
to utilize other smaller data storage facilities. Direct access to their data was needed
without mediation by an HSM, and then to a secondary machine like the Crays at NCSA.

94

The secondary staging was limiting, and the performance through the Hyperchannel was
considered extremely slow for the times. User observed data rates were usually 1 Mb/s
for a single stream, and multiple streams displayed a more dismal rate. New high-speed
tape technologies were emerging, but the Amdahl could not be upgraded to handle those.
The Amdahl was neither compatible with emerging tape and network technologies nor
capable of advancing to follow on standard data protocols for data transfer.

NSL UniTree and UniTree from DISCOS were researched, and thought to be good
products, but support in a 24/7 highly demanding production environment was
questionable. Convex ported UniTree to their systems, and created a tuned version that
was both faster and met NCSA’s reliability requirements. NCSA wrote a conversion
program for the move from CFS to Convex UniTree. The CFS databases were converted
to UniTree format, and the system was “taught” how to read CFS tapes. Over 2 TB of
data were converted, with a downtime of 3 days, to Convex UniTree. NCSA spent the
next year rewriting all the CFS data tapes to the UniTree format, so code to read CFS
tapes could be deleted at some future date.

2.1 Convex’s version of UniTree
In 1991, NCSA moved to a C220I machine from Convex. The machine had dual
processors and was wired for fast I/O. It had one hundred gigabytes of local SCSI disk,
five hundred megabytes of memory, twelve 3480 tape drives manually mounted, and 1
Ethernet. The main user base still resided on the Cray2 and Cray XMP with a Convex
3880 machine coming into production as an additional compute server. The storage on
the supercomputers was still purged as jobs finished, and users were required to store
their own files and manage their own mass storage space. Accessibility was changed to a
common FTP interface for all data, and data transfer performance improved because of
the Ethernet interface(s). At first, the users liked the new procedures and were very
happy with the FTP interface but, over time high-speed data networks were installed on
the Crays, increasing network bandwidth, and mass storage transfers once again became a
bottleneck. The data rate was too slow. User data rates were 6-8 Mbit/s (1MB/s). The
one Ethernet interface could not keep pace with 2 systems running Hippi. Jobs were
waiting on the Crays, and were wasting compute time in I/O wait states for the mass
storage system to return.

The amount of data the system was ingesting was becoming more costly to store, and
NCSA was forced to set storage quotas to limit users, mainly by encouraging them to
improve their file management rather than by restricting the work they were able to
accomplish. However, users reacted by storing their data in alternative, less reliable
places that created more hardship for them. A new tape technology, Metrum 2150 tape
drive, moved data at twice the speeds of the 3480’s, stored seventy times as much on a
tape (200 MB on a 3480 vs. 14 GB on Metrum), and a media cost was introduced to
alleviate NCSA’s storage cost problems. As data was written to tapes holding 14
GB/tape, the media expenditures of NCSA dropped dramatically. The Metrum tape drive
specification stated drives should be used over 20% of the day. NCSA calculated that
with 8 drives, that requirement could be met. NCSA also still dual-copied all data. The
cost effectiveness of the Metrum tape medium enabled NCSA to lift user quotas. Over

95

the next three years, additional Ethernet interfaces were added with increased disk cache
allowing files to reside on disk longer. It became very apparent that a Hippi interface
was needed to move data over the network faster, but the C220I machine could not be
upgraded to include that interface. The Convex C3880 was being phased out as a
compute server, and a large Thinking Machine CM5 was being brought into production.
NCSA’s mass storage system was “moved” to the C3880 machine. There was no
conversion program needed. The C3880 had the same operating system and same
hardware as the C220I machine. The databases were moved (FTP) to the new machine
along with the tape drives. The data was purged from disk (all written to tape) on the
C220I. When the C3880 came up, the data disks were empty, the databases showed all
the data on tape, and six terabytes were “moved” to the new machine. All this took place
during a normal downtime segment of less than 3 hours.

2.2 Continued Upgrades
The Convex C3880 machine (1994-1997) system was configured with eight Metrum tape
drives, two gigabytes of memory, two hundred gigabytes of disk, eight processors, one
Hippi interface, and two Ethernet interfaces. All traffic from the supercomputers was
routed over the Hippi while traffic from other systems went over the Ethernets. This
caused less congestion on the Hippi interfaces for slower data transfers. Users accessed
mass storage through FTP and still managed their storage. During the production years
of the C3880 archival storage machine, the CM5 was decommissioned, and SGI Power
Challenge machines came into production. There was no longer one large machine, but
several large machines all running jobs, and storing data. With many more machines
capable of storing data through Hippi interfaces, a single Hippi interface could not keep
up. Data streams started piling up with 3-4 concurrent transfers, driving down Hippi
performance. The Hippi performance from the SGI’s to the Convex was poor due to
different revisions of hardware. The SGI PowerChallenge machines were capable at the
time of 25MB/s, while the C3880 could transfer to the CM5 at 15MB/s, and only 3MB/s
to the SGI machines. Tape technologies were also changing. The vendor was phasing
out the Metrum tape. Therefore, new tape technologies were needed, but could not be
connected on current machine. A new system was needed that could handle multiple
Hippi interfaces (the latest revision), numerous simultaneous transfers and, as always,
new tape technologies.

2.3 HP Exemplar X-class Machine
In 1997, NCSA purchased for the mass storage system server a HP X-class Exemplar
machine. NCSA had stayed on the C3880 machine one year longer because there was not
a strong I/O machine to move to until the Exemplar machine was ready for production.
There was again very little conversion needed for the twenty-eight terabytes of data to be
up and running quickly. The conversion was the same from the C220I to the C3880. All
data was purged from disk, databases moved (FTP) showing all data on tape, old host
turned off, devices moved, and new host booted with same old name. NCSA stayed on
this machine for one and one-half years (1997-1998). This machine had eight processors,
four gigabytes memory, five hundred gigabytes of SCSI hardware RAID disk, two Hippi
interfaces and three Ethernet interfaces. Our user base started on the SGI Challenge and
Power Challenge machines, and then migrated to the SGI Origin class machines. The 2

96

Hippi interfaces were divided up among the systems so that a “load sharing” could be
achieved, giving users dual high speed data transfers into the machine. The new machine
was capable of much more throughput than the C3880, so the simultaneous data streams
count dropped dramatically. User scratch space was increased and more memory added
to the production machines, but data management was handled as previously, an FTP
interface for users to move/store data as jobs finished in batch queues.

The mass storage server system turned out to be a terrible environment. HP, who
purchased Convex, phased out UniTree and Convex hardware support. Reliability of the
system was questionable, it required a reboot every couple of days. NCSA did get some
work done in spite of the problems by purchasing six IBM 3590 tape drives including
NCSA’s first tape robot, an IBM3494 library. NCSA copied all the Metrum data to IBM
3590 tape technology within one year because the vendor was phasing out the Metrum
tape technology. The IBM3590 was faster than the Metrum, but did not hold as much
data/tape. The IBM 3590 held at the time 10GB/tape. The cost difference was not
significant enough to warrant changes in NCSA’s storage policies.

The environment for the users remained the same. The aggregate throughput of the
machine was much faster, but its instability drew many complaints. The Exemplar
machine was able to stage/retrieve user data on both Hippi interfaces at 21MB/s (a
combined total of 42MB/s). Normally there were 3 simultaneous transfers, but there
have been as many as 12. The number of processors and machines in the Origin cluster
continued to climb which in turn increased the need for more data streams to the mass
storage system. Stability and aggregate throughput to keep up with the amount of I/O
produced by our users were issues and NCSA again needed to upgrade

2.4 The switch to UniTree Inc and SGI
In 1999, NCSA evaluated HPSS, DMF and UniTree, Inc. storage systems. NCSA had a
solid base in SGI’s technology with much experience in the hardware and the software.
UniTree, Inc. was selected to run on an SGI server. A new Origin eight-processor
machine was purchased with four gigabytes of memory, two terabytes of locally attached
fiber channel disk, three Hippi interfaces, and two Ethernet interfaces. UniTree, Inc
provided a conversion program that rewrote the HP formatted databases on to the SGI in
UniTree Inc’s format, the data was purged from disk, devices moved. The capability to
read HP formatted tapes was already in UniTree Inc’s version. The new system came up
with seventy-five terabytes of data on tape in a matter of hours. UniTree, Inc. on our SGI
machine has proven to be reliable and efficient from its deployment in 1999 to today.
The aggregate throughput of the mass storage system was 180 MB/s. During that time
NCSA’s user base was migrated from the one hundred and eighty SGI Power Challenge
processors to fifteen hundred SGI Origin 2000 processors logically clustered into 10-15
individual machines. The user data rates were and still are 45MB/s for each stream across
the Hippi network. .

The three Hippi interfaces on the mass storage system were load “shared” by dedicating a
Hippi interface to the interactive machine, and splitting the traffic for the remaining
Origin processors across the other two Hippi interfaces. The six 3590 drives were moved

97

on to the new system, and a STK Powderhorn with seven 9840 drives and four 3590
drives was installed for a mixed media solution. This is the first time that NCSA has had
a “mixed” media tape solution without decommissioning one of the two. NCSA used the
9840 tapes for the smaller files in the archive, taking advantage of the mid-load
technology making time to first byte much faster. This small file threshold has changed
over the years, but started out as 500MB or less. The 3590-tape technology was used
for all other files, and all copy 1 data moved to an offsite facility. NCSA continued to
run both IBM and STK libraries until the fall of 2001.

2.5 Upgrades to Origin 2000
Over the last two years, the mass storage system has grown in size and capability. NCSA
started with eight 195 MHz processors, two gigabytes of memory, three Hippi network
interfaces, and two Ethernet interfaces, an IBM library with capacity for 12 TB of
storage, a Powderhorn library with capacity for 120 TB, ten 3590 tape drives, and seven
9840 tape drives. The system today has grown to sixteen 250MHz processors, with
twelve gigabytes of memory, an ADIC AML/2 library with two sections for a capacity of
720 TB, an STK Powderhorn with capacity of 120 TB, six IBM LTO tape drives, ten
3590 tape drives, seven 9840 tape drives, eight GigE network interfaces, and three Hippi
network interfaces. Its current throughput is 235MB/s with an archive size of 420 TB.

In the past two years, the user base machines have changed. NCSA now has fifteen
hundred SGI origin processors with a mixture of 10 TB of disk. There are plans to deploy
15 TB more for production machines early in 2002. The mass storage system today
supports a production IA-32 Linux cluster of 1024 processors and five terabytes of disk, a
180 node IA-64 (Itanium) dual processor Linux cluster, and an SGI Origin Array that will
be phased out over the next two years as the Linux clusters move into production. The
Hippi network will also be phased out, with GigE as the replacement. The performance
study that NCSA has completed showed that the 45 MB/s single stream from the SGI’s
will not be matched, but the aggregate throughput of the GigE is greater because the
handling of multiple concurrent streams is better. A single Hippi interface single stream
runs at 45 MB/s and drops to 25MB/s for two streams, and 8 MB/s for three streams. A
single GigE interface from SGI to SGI will transfer data at 25MB/s, and drops to 22 for
two streams, and to 20MB/s for three stream. NCSA usually has 5-8 streams of data at
all times.

The six TFLOP TeraGrid system will be the next big increment. The data that the mass
storage system is ingesting is expected to continue to increase; however, predicting the
growth rate and the necessary aggregate throughput needed has been difficult. Big jumps
in CPU performance have inevitably produced more and more data, and the growth
trends appear to advance along the same curve that is typical of other supercomputer
centers. [1] If there is a big jump in CPU hours offered, the amount of data stored shows
a proportional jump. But the network bandwidth into and out of the mass storage system
that is necessary for applications is hard to predict. NCSA has been increasing aggregate
bandwidth of the storage system after the need has been manifested.

98

NCSA has set a goal for 2002 of achieving 750 MB/s (three times current throughput) as
the optimal performance for the mass storage system for the first year of the TeraGrid
machine. The Itanium cluster is entering friendly user testing (March 2002). As 180 dual
processor machines start storing data to the mass storage system through each systems’
own GigE interface, observations will be gathered and adjustments will be made to local
disk and archive systems as needed. Only time will tell if these predictions will ring
true.

2.6 Hidden work for the mass storage system
The mass storage system at NCSA not only stores/retrieves user data, but also insures the
integrity of the data trusted to the archive. In other words, if a file has been stored at
NCSA’s mass storage system, it will be retrieved. No files transferred properly to the
mass storage system at NCSA have ever been “lost” or become irretrievable. There was,
on one occasion, Hippi protocol inconsistencies between SGIs that contributed to a
handful (<50) of files being corrupted before they reached mass storage. Those files
were then retrievable, but still “corrupted”. The duplicate copy has been a costly but
wise investment. Media failures occur occasionally, but users at NCSA do not notice
other than a file might take longer to retrieve than normal. NCSA is constantly rewriting
data to new tape formats/media. Migrations in the past have been from the 3480 tapes to
Metrum, Metrum to 3590, 3590 to 3590E or LTO, 9840 to 3590 or LTO. When
purchasing a machine, NCSA has always included the background processes that need to
take place to maintain the environment. Tape drives are not only needed for
writing/reading of user data, but for repacking user data onto different tapes, possibly
different tape types. The memory, disk cache, CPU, and tape infrastructure must be
capable of handling these additional “hidden” tasks of a well-managed HSM.

3.0 Disk strategies for big iron
The large batch systems at NCSA serving supercomputing science over the years have
changed quite a bit. Each increase in CPU capacity, memory, and new architectures has
meant increased demands on the mass storage system. Sometimes, it has been more
bandwidth into the machine for each stream, other times it has just been an increase in the
amount of data stored. NCSA has benefited from other disk storage solutions that
complement the mass storage system. Pools of local disk for the batch systems, and
other smaller disk resources managed by the users for their own data have been highly
effective. Each strategy tried has its niche for how it fits in the environment, but none of
the solutions can do it all. Below are details on NCSA’s file system strategies.

3.1 NFS
NFS has been used by every supercomputer that NCSA has placed in production. The
Crays used it for cross mounting file systems to mount home directories and application
software. NFS is slow. However it is easy, convenient, stable, compatible, and well
understood by users. NFS is currently being used by NCSA for protecting the critical
file systems of the large supercomputers. A failsafe server serves file space for user
home directories as well as all application software. These file systems are exported
from the failsafe system to the Origin Array, the Linux IA32 cluster and Linux IA-64
cluster. NFS is also used to cross mount all the local scratch file systems for each “type”

99

of cluster. NFS is used by batch jobs to see all storage on the different batch machines,
but users take a performance hit by using it for read/write operations.

3.2 Andrew File System
The Andrew File System (AFS) is heavily used more for the desktop infrastructure
environment. NCSA hoped in 1994 that AFS would replace NFS for home directories
and application software but the file system didn’t have the performance required. AFS
is used on the Origin cluster for a common link to center-wide installed software such as
perl, email readers and the like. Some users do use AFS for data sharing to other
environments at NCSA without FTP transfer, but performance is quite limited.

3.3 Local scratch
As described above, the large batch systems have local disk attached that is available to
users for the duration of their batch job. As the jobs run, data may be retrieved from mass
storage and before the job ends users are responsible to store their data back. NCSA has
written a few “management” scripts for our users for doing persistent stores so that data
will not be removed from scratch file systems until the files actually make it to the mass
storage system. In the days of the Cray Super Computers users, had access to a gigabyte
of disk storage for scratch space and that has grown steadily to where today NCSA
supports file systems in the terabyte range.

3.4 Backup
The backup system at NCSA also runs a UniTree storage system on a SUN 6500
machine. It has four IBM LTO tape drives, and shares the ADIC library with the mass
storage system. This system handles one terabyte of data per week. NCSA backs up the
AFS, NFS, /root, and /usr file systems for all the batch machines and all desktop
machine/laptop/file servers. The data in the scratch file systems is too volatile and
therefore are never backed up.

4. User and Storage patterns

The amount of storage at NCSA has continued to climb at a steady pace. Recently the
growth has been more aggressive. The years 1997 – 2001 saw an 88% growth rate. As
machine CPU hours continued to grow at close to exponential rate, the storage also
followed faithfully. The chart below maps out the “normalized CPU hours” of the
individual production machines at NCSA. The normalized hours have been calculated
based on utilization of the machine, and then quantified to be equal among the different
machine types. This allows us to equate cpu hours for all machines at the different
supercomputer centers for NSF allocations of CPU hours. The bottom section of this
chart shows the different machines that were in production during those years.

100

Te
ra

by
te

s
in

 S
to

ra
ge

1 0 ,000

100 ,000

1 ,000 ,000

10 ,000 ,000

N
or

m
al

iz
ed

 C
PU

 H
ou

rs

1

10

100

1000

X -M P

C ray-2

Y -M P

C M -2

C M -5

C halle nge

E xem plar

O rig in

1985 1987 1989 1991 1993 1995 1997 1999 2001

Y ear

M ass S to rag e

H P C C yc les

B est fit 62% annua l g row th

B es t fit 66% annua l g row th

C 3880

As the archive has grown, storage and retrieval patterns have changed. Large file archives
historically have been read only [2] At the CFS conversion time, the size of the archive
was 2 TB. UniTree was used primarily to store files that were never retrieved. The older
the data, the lower the chance it would ever be recalled. Researchers try to predict what
files will be used [3], but over the years, the “reuseability” of the files has changed
dramatically. In 1992, as the graph below illustrates, 18% of files up to three months old
were retrieved, at six months 12% were retrieved, and after 12 months 3% were recalled.
Performance of the archive was unacceptable, and scientists found it faster to recompute
data than to get the file from the archive. With increases in bandwidth and stability the
data retrieval statistics have been changing, new files in the first three months in the
archive have a retrieval hit rate of 50%, the first six months at 28% and drop only to 18%
for data within its first year in the archive. So it is no longer a write only archive. Data
storage performance was one of the most important criteria that the archive was judged
on at NCSA, and now the increased speed and capacity have made data retrieval
extremely important as well. Users are no longer recomputing, but retrieving data as
needed, quite often, as the chart below shows. As scientific archives grow because of
further research data derived from those archives, the role of data retrieval can only
increase..

101

% of files retrieved

0
10
20
30
40
50
60

3 months 6 months 12 months

age of first retrieval

1992
2001

4.1 Growth for whole archive

Our growth patterns have remained much the same over the years. The archive size has
been doubling about every year. The NCSA archive by this time next year will be close
to a petabyte in size. Below is a graph of NCSA’s overall growth. The first ten years are
overshadowed on the graph by the huge amounts of data stored in the later years.

102

0

50

100

150

200

250

300

350

400

450

1985 1987 1989 1991 1993 1994 1997 1999 today
End of year

mass storage growth

The graph of just year 2001 storage statistics for NCSA has a line for each day. The
growth is very linear, and continues. For the TeraGrid, there will be a large increase in
the data stored, but the amount is not known at this point. It is very hard to predict
storage requirements for supercomputer centers [4]. As users have been given more
resources in the past, they have produced more data, and storage seems to stay on the
same curve as the normalized CPU hours of the machines.. The above graph does show a
correlation to the CPU hours of a machine and the amount of data stored, but the number
of CPU hours offered by a machine is not known. Within the next five years, there will
be a technology switch again, as NCSA continues on the same curve; it is not known
what is next for NCSA or supercomputing in general. [1]

103

4.3 Usage patterns and filesize
The average file size has also doubled in the last couple of years, but the average file size
of our archive still seems small for a 400TB archive. Small files are normal for many
large archives [4]. A chart of the average file sizes stored in the archive for the last six
years shows that it has been increasing, but there are still very small files being used,
while there are only a few files that are large (>500GB). This means that when
purchasing drives and media types, the small files need to be considered. The small file
is sometimes not brought into the mix when discussing mass storage, because large files
are the norm, but as seen here, that is not true.

Year Average File Size (MB)
1996 8.95
1997 13.75
1998 20.49
1999 38.97
2000 43.50
2001 68.88

104

The filesize growth may be attributed to increased capabilities of the processors so that
transfers are no longer as time-consuming. The filesize certainly has not grown as
expected, so maybe moving files that are 100GB or larger is still difficult, and a huge
undertaking not only to stage, but to work with on the various production machines. As
the average file size continues to grow, in 5 years NCSA users will be moving files > 100
GB with ease because of advances in data management and increased bandwidth.

Our top 10 users in FY 2000 stored:
 Files TB
 User1 4,391 3.2 (user 11 in 2001)
 User2 259 2.8
 User3 77,498 2.5 (user 9 in 2001)
 User4 107,722 2.3 (user 1 in 2001)
 User5 1,162 1.8
 User6 2,743 1.7 (stays in slot 6 for 2001)
 User7 3,790 1.6
 User8 26,651 1.4
 User9 8,757 1.3
 User10 9,101 1.2

While in FY 2001 the top 10 users have stored:
 Files TeraBytes
 User1 328,394 9.4
 User2 10,163 4.3
 User3 23,404 4.0
 User4 9,104 3.8
 User5 1,871 2.5
 User6 4,275 2.9
 User7 2,427 2.1
 User8 5,683 1.9
 User9 30,033 1.9
 User10 4,122 1.8

Just among our top ten users, the amount of data stored has considerably jumped. Our
largest user in 2000 stored over 3 TB of data in 1 year. In 2001 our top four users each
stored over 3 TB of data, with our top user in 2001 alone storing 9 TB. Another
interesting point from the data above is that the top users at NCSA do not remain the
same year after year. Only 4 users in the top 10 for year 2000 were in the top 11 of
2001.

4.4 Building for the TeraGrid machine
The NCSA mass storage system will be receiving another upgrade in Jan 2002 with an
upgrade to six terabytes of disk. NCSA will also add an additional distributed disk
server slated for production use in spring 2002. The second disk server will be an SGI
Origin 3200 with four processors and two gigabytes of memory. The 3200 machine will
have six terabytes of disk and ten GigE interfaces for a throughput of 250MB/s. NCSA is

105

researching currently how to split data across the machines, with criteria based on uid,
gid, original IP address, or file size being investigated. The new system combined with
the current system makes the disk cache twelve terabytes with a real aggregate
throughput of 450MB/s. NCSA will be also adding ten more IBM LTO tape drives. In
late 2002 a 3rd distributed disk machine, an SGI Origin 3400 with aggregate performance
of 300MB/s is to be put into production. This will bring the aggregate mass storage
throughput to our goal of 750 MB/s. This goal has been based on the TeraGrid
machine’s predicted performance and the cost analysis of additional
bandwidth/throughput for the mass storage system.

Now that NCSA has machines that can handle data at very high rates, and grid and user
portal environments are being deployed, improved user tools are needed to move data
from place to place. Some important deficiencies relate to inadequate descriptions of
what data are available, where the data are located, and how and under which condition
users may access the data [5]. The tools that NCSA has given our users have not
changed from some form of FTP. NCSA is working on porting GRIDFTP from the
Globus group onto the UniTree server so that the FTP transfers will be in parallel to the
mass storage system. These tools are also being added to the distributed parallel file
systems as explained below. We are incorporating GRID data technologies and working
with the Globus group [6] at ANL to enable a grid environment of data being moved,
replicated, and archived for all grid users. Gridware from Globus will help users take
advantage of different data storage components with in the Grid, and aid the users in data
management issues.

5.0. Linux Clusters Storage
NCSA is looking at many different file systems that might be able to accomplish our
goals for the TeraGrid machine, and one standout is the Global Parallel File System
(GPFS) from IBM. This is the linux port of GPFS to IA32 architectures from the SP2
machines. GPFS has been running at NCSA since October 2001. GPFS has three major
components: a) the disk server is the machine with the disks attached; b) the GPFS server
is the metadata server; and c) the individual client. A GPFS file system client must be
installed on each system. Each system can then see all the data. GPFS can scale up by
adding more servers and clients. GPFS can have multiple servers hosting the same file
system or individual file systems as needed. NCSA has tested up to 120 clients and 8
servers all seeing the same single file system. GPFS has high availability options so that
there is fail-over for disk servers and GPFS servers. Users interface with the native I/O
commands to the file system, and all clients can read/write to the same file system and
even the same file. Files are distributed across multiple servers by GPFS so that one user
can gain access to the entire GPFS file system with all servers writing data at once. The
performance does decrease as expected as more I/O requests are added from there.

NCSA thinks that this is a very strong product with a very good team behind it. GPFS
relies on a very fast low latency network for good performance to be observed. Since the
changes in Myrinet driver in release 1.5, GPFS made great strides in reliability. GPFS is
a file system for a single system only, there is no data sharing with other systems. A
follow-on phase of GPFS development with IBM is a mixed GPFS cluster file system.

106

The mixture would be IA64 and IA32 clients and servers for a single GPFS file system.
NCSA wants to add the Globus toolkit to GPFS, so that parallel data transfers can be
used to move data out of the linux cluster machine to other grid systems or a mass
storage.

The chart below compares the performance NCSA had with Ethernet and Myrinet.
Myrinet has the best performance. The chart also shows the performance of 2 servers
running on Myrinet. The performance that one client receives shows that the single client
can gain the entire GPFS file system pipe. The performance scales down from there.
These runs on the file system were done before several updated releases of the RedHat
kernel with significant I/O changes.

I/O zone tests GPFS

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

1 2 3 4 5 6 7 8 9 10 11 12 13 14

additional clients

100baseT write
100Baset read
Myrinet 1 server write
Myrinet 1 server read
Myrinet 2 server write
Myrinet 2 server read

The performance achieved running 4 and 8 servers and various numbers of clients is
shown in the next chart. The 4 wide servers numbers were run before tunables for the
kernel were made. The 8 wide tests have the kernel mods, but the SAN disks haven’t
been tuned yet. All clients write a 256 MB file simultaneously. Neither IBM nor NCSA
is satisfied with the performance, and both are working on that part of this project.
Problems are thought to be in the 7.1 kernel. Reads for a 10 wide test of GPFS are >12
MB/s on average, and > 31MB/s for writes.

107

GPFS with 4 servers

0

5000

10000

15000

20000

10 clients 120 clients

number of clients

K
B

/s write
read

GPFS Performance for 8 wide

0
2400
4800
7200
9600

12000
14400
16800
19200
21600
24000
26400
28800
31200
33600
36000

10 20 30 40 50 60 70 80 90 100 110 120

of machines

K
B

/s write
read

6.0 Conclusions

The mass storage system at NCSA has evolved over the years. It started out as a small
system with a slow interconnect and evolved to a very large system with many fast
network interfaces. The supercomputer machines providing the bulk of the data to the
mass storage system have also evolved. The machines started out as one system with a
few CPU’s, changing to a few systems with many CPU’s, to many machines with few
CPU’s. File systems on the supercomputers have also changed, but users must do their
own data management. They decide where to put their data depending on their

108

applications. The interfaces for users to move data are still the rudimentary FTP tools.
NCSA is making great strides to incorporate Globus grid tools into clients and servers for
utilization of parallel data transfers, and better data management.

NCSA is adding a distributed data cache machine to its mass storage architecture to
enable more simultaneous data transfers as the TeraGrid machine is built. More data
cache machines will be added depending on how much aggregate data throughput is
needed. History has shown that NCSA’s data archive is growing at almost the same rate
as the normalized CPU hours on the production machines. This is not hard to predict for
maybe a year out, but gets harder the farther out one goes. The throughput is the hardest
question. Not only do the mass storage archives need to keep up with the production
machines on the LAN, but also as GRIDs gain users the amount of data coming in/out
from production machines on the WAN will become an issue.

NCSA is looking at many different file systems to provide the best environment for our
users. GPFS from IBM is being tested and beginning a friendly user period at NCSA.
However more needs to be done to “share” data between these individual compute
islands. Moving the data to the machine an application is running on as needed is a step
in the right direction, but more needs to be done in this arena. Most of these tools today
also deal only in flat files while databases are gaining respect and speed in the
supercomputing environments.

References
1. Horst D. Simon, William T.C. Kramer, and Robert F. Lucas, “Building the
Teraflops/Petabytes Production Supercomputing Center” EuroPar '99 in Toulouse,
France, September 1999
2. Heinz Stockinger, Kurt Stockinger, Erich Schikuta, Ian Willers. “Towards a Cost
Model for Distributed and Replicated Data Stores”. 9th Euromicro Workshop on Parallel
and Distributed Processing PDP 2001, Mantova, Italy, February 2001, IEEE Computer
Society Press
3. Timothy Gibson and Ethan Miller, " An Improved Long Term File Usage Prediction
Algorithm," Annual International Conference on Computer Measurement and
Performance (CMG '99), Reno, NV, December 1999
4. Joshua C Neil, “Characterizing Long Term Usage of a Mass Storage System At a
Super Computer Site”, Eighteenth IEEE Symposium on Mass Storage Systems IEEE
2001
5. CODATA Committee on Data for Science and Technology, Working Group on
Archiving Scientific Data, http://www.nrf.ac.za/codata/
6. Ian Foster, Steve Tueke, Carl Kessleman, http://www.globus.org

109

The Challenges of Magnetic Recording on Tape for Data Storage
(The One Terabyte Cartridge and Beyond)

Richard H. Dee

Storage Technology Corporation, One StorageTek Drive, Louisville CO 80028-4274
Tel: +1-303-673-3976, FAX : +1-303-673-8406, richard_dee@storagetek.com

Abstract
Operating points to achieve Terabyte tape cartridge capacities and beyond drive both
linear and track densities to values not perceived possible a few short years ago. The
primary contributors to the issues related to these high capacities are the physical and
magnetic properties of the tape media itself. The total magnetic moment of the recorded
bit, driven by the magnetic coating thickness, dominates the recording process and
determines the linear recording density possible. Moving a thin tape at high speeds and
the mechanical stability in the cross track direction provide engineering challenges for
increasing track densities in combination with many parallel channels for high data rates.
These issues and trade offs are the main focus of this paper.

1. Introduction
Storing and retrieving data on magnetic tape is driven by (a) capacity (Gbytes/cartridge)
primarily because of the cost of storage ($/Gbyte), (b) data rate (Mbytes/second) as
people don’t want to wait forever and (c) reliability (the data has to be there!). This paper
complements the presentations given by Ted Schwarz in past years [1-2] with a little
more technical depth. The capacity of a tape cartridge is simply the areal density of the
data multiplied by the area of the media used but is often preferably computed in tape by
using the relation

8
εNbLC = … (1)

in bytes, where N is the number of tracks across the tape, b is the linear recording density
in bits per inch, L is the length of the tape (in inches) and ε is a formatting/ECC overhead
efficiency factor (typically about 0.7). The 8 assumes 8 bit bytes. The date rate is given
by

8
εnbVD = … (2)

in bytes/second, where n is the number of parallel channels used and V is the speed of the
tape (in inches/second). These two relations capture the main parameters in increasing
capacities to terabyte levels and data rates to 100’s of Mbytes/sec. The linear density (b)
appears in both calculations and thus is a strong contributor to the problem. The number
of tracks (N) in the capacity and number of channels (n) in the data rate are parameters
that may be in conflict when radically increased as will be discussed later.

110

Table 1 shows scenarios for a 0.5, 1, 5 and 10 Terabyte capacities for various data rates
for a normal IBM3480/STK9840/LTO/DLT ½ inch wide tape cartridge form factor.
Some tradeoffs between the parameters given in equations 1 and 2 have been included for
illustrative purposes and one can easily see where a different set of trade offs could yield
the same result depending on which aspect of the tape system you wished to stress more.
The stress points are boxed for the cases shown and it is these challenges that are
discussed below in relation to the media aspects, the heads and the channel in order to
accomplish these operating points.

2. Magnetic Recording
Figure 1 shows a block diagram of a tape recording system from data in from a host
computer channel, onto and off the tape and back to the host upon a data read [3]. This
figure summarizes the main components and systems needed for the tape system to
function. All the subsystems (write method, read equalization and detection, servo, head

and tape handling) serve to deal
with the unique properties of the
tape media itself. This is from
both a magnetic and mechanical
perspective. The media dictates
how the rest of the system is
designed in order to achieve
high-density data recording and
thus is the main contributor to
limitations thereto.

Fundamental to recording
digital data on magnetic tape is
the analog magnetic recording
that takes place between the

Figure 1. Block diagram of a tape recording
system

Capacity (TB) 0.5 0.5 1 1 5 5 10 10
Data Rate (MB/sec) 60 120 110 220 150 300 280 559
No. of Pll Data Channels, n 16 32 16 32 16 32 16 32
No. of Data Tracks, N 768 768 1344 1344 4750 4750 4140 4140
Trk. Pitch (µm) 14.0 14.0 8.0 8.0 2.3 2.3 2.6 2.6
Channel Pitch, c p (µm) 109 55 109 55 109 55 109 55
Rd. Track Width (µm) 7.0 7.0 4.0 4.0 1.1 1.1 1.3 1.3
Tape Speed, V (m/s) 4.8 4.8 8.0 8.0 9.0 9.0 10.0 10.0
Bit Density (kbpi) 224 224 248 248 298 298 500 500
Track Density (tpi) 1812 1812 3172 3172 11211 11211 9771 9771
Areal Density (Gb/in2) 0.41 0.41 0.79 0.79 3.35 3.35 4.89 4.89
Bit Cell (nm) 114 114 103 103 85 85 51 51
Bit Cell (ns) 23.7 23.7 12.9 12.9 9.5 9.5 5.1 5.1
Write Eq. Pulse (nS) 9.5 9.5 5.2 5.2 3.8 3.8 2.0 2.0
Tape Length (m) 865 865 865 865 1000 1000 1400 1400
Write Time per Cart. (min) 144 72 152 76 550 275 604 302

Table 1. Terabyte operating points

111

Figure 2. Magnetic Recording

head and the media. These two
magnetic components in
combination can make or break
a reliable data recording system.
Figures 2 illustrates magnetic
recording on tape and its digital
interpretation. The digital
interpretation is that a transition
between a region on the tape
magnetized in one direction to
the opposite direction is
interpreted as a logical ‘1’ and
the absence of the transition a
‘0’ when referenced to a data
clock. This interpretation
depends on the logic used by
the detection system and coding
design. For instance a PRML
channel (Partial Response

Maximum Likelihood) interprets the recorded transitions in a different way by partial
amplitude sampling in order to increase the bit density using somewhat lower magnetic
transition densities than in straight peak detect channels as illustrated. Such channels
increase the logical bit density up to twice that of the recorded magnetic transition
density.

3. Recording Technology Challenges
Fundamentally, an increase in linear recording density requires the transitions to be closer
and closer together on the media and the ability to resolve them. Table 1 indicates the
length of a logical bit (bit cell (nm)) for the various scenarios given for reference (~50 –
100nm). Tape media to date has had the magnetic coating somewhat thick (0.5µm or
more) compared to these dimensions which gives broad written transitions due to the
generation of transitions curving into the depth of the magnetic coating and the
demagnetizing effect of sizeable opposing magnetic poles. These effects are summarized
in the equation for the transition length parameter (the ‘a’ parameter) thus:

2
1

23
22

 +

= δδ

d
H

M
a

c

r … (3)

where Mr is the remanent magnetic moment of the medium, δ the magnetic thickness, Hc
the magnetic coercivity of the medium, and d the head to tape spacing. This relation
comes from assuming that the transition follows and arctangent function shape [4]. In
order to reduce this transition length parameter the ratio Mrδ/Hc must be reduced. This
can be done either by increasing the coercivity, Hc, which physically means it is harder to
push the magnetized regions apart or by reducing the medium thickness, δ, which lowers
the total magnetic moment and hence the force which is pushing the regions apart.

112

Reducing Mr is a little more difficult using iron particles (as currently used in MP tape),
as this would mean reducing the number of particles in the magnetic coating, which
would have the side effect of reducing the signal-to-noise ratio (SNR). An acceptable
reduction in Mr could only come from a different particle; for example barium ferrite
(BaFe) or a different media construct (such as thin film media). The coercivity of tapes is
in fact on the upswing with prototype MP media pushing 2500 Oe compared with today’s
1650 Oe 9840 media and 1850 Oe DLT/LTO media. Figure 3 shows how linear density
has indeed gated tape products in the past according to media coercivity together with a
projection for future systems based on published roadmaps. (The data here are taken from
existing IBM, STK, Quantum DLT and LTO tape products). Excessive increases in
coercivity would however begin to challenge the available magnetic pole materials used
in the write head where the saturation flux density is limited. This would eventually
degrade recording performance if the coercivity increases much beyond 3500-4000 Oe.

Reducing the thickness is the primary direction to pursue and recently this has been
achieved in particulate media by using a dual coating process. Here the magnetic portion
of the tape coating is spread thinly over a simultaneously coated non-magnetic under
layer. This effectively provides a thick physical coating for smoothing purposes coupled
with a reduced thickness magnetic layer as illustrated in figure 4. This has enabled
coatings to be produced as low as 100nm and progress is being made to reduce this
further [5]. This technique, however, will eventually run out of steam for the particle in
binder tape medium concept. One quickly gets to very few 20-30nm thick particles
stacked on top of one another in a <100nm coating with the resultant SNR reduction. For
areal densities greater than a few Gb/in2 , the move to thin film media will have to be

0

50

100

150

200

250

300

1970 1975 1980 1985 1990 1995 2000 2005 2010
Year

kbpi

CrO2 650 (Oe)

MP1 1650 (Oe)

MP2 1850 (Oe)

MP4 2400 (Oe)?

Metal 2700 (Oe)?

Fe2O3 350 (Oe)

trends.xls

Figure 3. Linear density versus year for linear tape systems

113

made as it was for magnetic
disk. (Tape is indeed fortunate
that magnetic disk has already
demonstrated solutions to high
areal density magnetic
recording.)

The other parameter that figures
into the areal density is track
density. Again the number of
particles contained within the
bit becomes squeezed as the
track narrows. As the SNR is
related to the total number of
particles contained in the bit
volume [4] an estimate for the

areal density limit, Alim, for metal particle tape can be made from an SNR standpoint and
input from media producers on what might be the maximum particle density (smallest
thermally stable dispersible particle). Following Mallinson [4] it can be shown that

2
1

2
1

lim 3
2

= pSNRtA … (4)

where t is the track density, p the magnetic particle density in the media and SNR is the
signal-to-noise ratio requirement. Using for example 3000 tracks/cm (7620tpi), 1017
particles/cm and 20dB we get an areal density of approximately 10Gb/in2. This assumes
that the whole written track is read, no spacing loss and one logical bit per transition.
Using a write wide read narrow scenario, as linear tape currently does, and invoking a
PRML channel you come out with a very similar number or maybe slightly higher
depending on the SNR and desired raw bit error rate. (PRML channels operate at lower
effective SNR values.) The areal densities in the cases shown in Table 1 approach
5Gb/sq.in. and the question arises as to how close to the computed limit can you engineer
particulate media for this, or is thin film media prompted as it was in disk.

The other main parameter in equation 3 is d, the head to medium spacing. This also
figures heavily into the wavelength response upon read back. Loss of resolution of the
shortest wavelengths is severe (e-kd , where k is the wave number) and the resultant signal
loss is normally given in dB form by the relation [6]

λ
dLoss 6.54−= dB … (5)

In combination with spacing on write, the multiplier in equation 5 (-54.6) is closer to
-100! Although we run the tape in physical contact with the head, the ‘magnetic’ spacing
seen is due to media roughness, recession of the magnetic elements in the head and any

Figure 4. Diagram of a cross section of dual coat
tape recording media

114

adherent (or temporary) debris or stains on the head. Current systems appear to have up
to 70nm of magnetic spacing while in apparent physical contact and this will have to
come down if we want to resolve high density terabyte recordings and not suffer the
resulting loss in signal amplitude and resolution.

Head technology appears to have enough precedents and product introductions (again as
seen in disk magnetic recording) that tape head offerings should be able to readily
respond to new media types as they are developed. A classic example would be the shift
to all thin film write heads and thin film shielded read heads as well as merged
pole/shared shield structures commonly used in disk and now being seen in tape
applications. Examples are shown in figure 5. The main issues facing the tape head

concern the consequences of using multiple channels simultaneously in read-while-write
mode. I.e., direct write to read feed through and read element off-track due to tape static
and dynamic azimuth. A future example of disk like technology for tape would be the
introduction of the GMR spin valve read sensor now prevalent in desktop systems in disk
drives. This would be predicated by the availability of a suitable media that would be
compatible with high-density recordings and these very sensitive devices, as well as
environmental issues seen in tape usage. Alternatively, new designs of spin valve sensors
customized for tape could be used with the still somewhat higher Mrδ values that may
persist. The switch to spin valves will be driven by the need for raw signal amplitude to
overcome the unique noise sources in the multi-channel read-while-write tape
environment (such as write-to-read feedthrough) as the read element width and hence
signal amplitude is reduced.

Another issue raised in Table 1 is the time scale of the recording. For high bpi and fast
tape speeds, the bit cell time is reduced to <10nS. If write equalization persists as a
favorable recording method (which it will if the Mrδ is not reduced significantly) then the
recording system (write current, write head magnetics and media magnetization) will
have to respond on the 1nS time scale. For a 3nS write equalization pulse the media has
to see the field at least 2nS of that time to stand a chance of responding. Figure 6 shows
how magnetic media (in this case MP1 media) changes its effective coercivity for fields

Figure 5. Diagrams of thin film tape head types showing thin
film write, MR read and combination shared shield devices

115

Figure 6. Coercivity of MP tape versus time
scale of the applied magnetic field.

applied at very short times.
The rise in coercivity means
that we would have to
overdrive the system to affect
the recording in the required
way presuming that the head
magnetic core can provide the
specified field in response to
the drive current. The issue of
getting the drive current into an
inductive load like a write head
exacerbates the problems in a
multi-element tape head where
stray capacitance paths can
shunt the coil current. Core
materials for the head appear to
be available to provide this

response and current production head types such as the StorageTek T9840B write head
have demonstrated good performance down to 10nS. Data for this is shown in figure 7 for
such a write head, which uses cobalt based amorphous alloy poles.

This data shows that the read
back amplitude remains the
same when the pulse length is
reduced and that the head
efficiency does not roll off
significantly. The two
efficiency curves represent the
directly measured head
efficiency and the head
efficiency corrected for the
media coercivity shift
according to figure 4 (this
curve is indicated with an *).
These time scale issues are not
at any fundamental limits
imposed by the laws of physics
but provide the engineer with
interesting challenges. The

particulate and metal based tape media respond at 1nS and I think operating near 1nS will
be avoided in any case with the eventual elimination of write equalization.

4. Mechanical Issues
The tape speeds used in Table 1, for the high data rates, provide the tape path and motion
control with some challenges. This is especially so considering the tape lengths needed
for the capacities which in turn means the tape thickness needed for the cartridge size

0

0.2

0.4

0.6

0.8

1

1.2

1 10 100 1000
Pulse Length (nS)

N
or

m
al

iz
ed

 O
ut

pu
t

Output
Efficiency
Efficiency*

Iw vs pulse.xls

Figure 7. Head efficiency and readback output
vs. write pulse length

116

approaches 5µm (or even a little thinner). This thickness (or rather thinness) means a
relatively low tape tension with which to achieve these speeds with adequate lateral
guiding and tape pack management. On top of this, the bandwidth of a track following
servo system would have to increase together with its capability to achieve the track pitch
targets. Again, no real fundamental limits here, just a solid engineering problem.
Unfortunately, these factors get much less attention than the more intuitive limits
imposed on track density by the dimensional stability of the media itself. Very narrow
tracks, coupled with multi-channel heads that span a significant portion of the width of
the tape, result in track mis-registration (TMR) numbers that imply roadblocks beyond
mere electronics. There is an interesting trade off between data rate and capacity that can
be made as outlined in the 1998 NSIC tape roadmap [7]. Given a fixed tape length and
achievable linear recording density, capacity can only be increased by increasing the
track density (narrower tracks). This means the allowable off-track capability (OTC) is
reduced. For higher data rates the only adjustable parameter, once the tape speed is set, is
the number of parallel channels in the head. The more channels side by side the wider the
span across the tape and more likely the end tracks will exceed the OTC as the tape
dimensions change with time, tension, temperature and humidity. The results of the
calculation of this trade off is formulated as

()
cpmCc

LWVbOTD
64

2 22ε= … (6)

where OT is the allowable off-
track expressed as a fraction of
the track width, W the width of
the tape, C the capacity of the
cartridge, cp the channel pitch in
the head and mc the media
instability coefficient. Figure 8
shows the situation for various
media stability numbers (from
ref. 7) and is considered
somewhat optimistic as it
considers only writing the
tracks in the correct location
and not any read-while-write or
realistic read back scenarios.
Also current feedback from
media suppliers is that the

stability numbers will probably not improve as significantly as suggested here anytime
soon. The implications of this chart are simple to interpret. If you want very high
capacity, i.e., very narrow tracks, the number of parallel channels laid side by side will
have to be reduced, lowering the possible data rate.

Figure 8. Data Rate/Capacity trade off for a
linear tape system.

Data Rate/Capacity Tradeoff
(10m/s, Cp=50µm, 200kbpi, 12mm tape, 10% OT)

0

100

200

300

400

500

600

700

800

900

1000

0 5 10 15 20 25 30

Capacity (TB) / 1000m of tape

D
at

a
R

at
e

(M
B

/s
)

250ppm
500pm
1000ppm

8

16

32

Ntracks.xls

Media Instability

Channels

117

The only way around this is to change the way we parallel up head stacks to avoid the
excessive head span or change in some other way we lay data on tape. Super DLT and
helical systems for instance use dual azimuth recording on adjacent tracks allowing a
larger OTC. This is one reason the areal density demonstrated by helical scan systems
(e.g. SONY) already exceeds that projected for linear systems. Helical technology uses a
single channel or few channels approach, high head-tape interface speeds, dual azimuth
and short length tracks, which circumvent these media related problems. Unfortunately
helical technology has suffered head and media wear problems and there is a perception
of poorer reliability compared to linear systems, the basis for which is somewhat clouded.
The challenge for the multi-channel linear head here is the reduced channel pitch. 50µm
as indicated in Table 1 is certainly achievable, but beyond that, a new approach over

today’s norm (figure 9) is expected.

Finally, figure 10 summarizes the areal density progress and trend extension for linear
tape based on past and present systems and published roadmaps. As mentioned before,
heads and media in combination are the primary drivers for this parameter. The coercivity
rise from oxide tapes to MP tapes and in the future thinly coated particulate or metal film
tapes have been responded to by heads moving from ferrites to thin films and high
moment thin films to write these tapes. This is in conjunction with MR and eventually
GMR read heads to deliver appropriate signal quality. Also shown is the SONY helical
6.5 Gb/in2 demonstration on metal evaporated (ME) tape and subsequent 16.4 Gb/in2
point using spin valve heads [8], and the estimated MP limit using today’s assumptions.

5. Conclusions
It is clear that the medium has a significant if not the primary impact on the density
growth in magnetic tape recording. As demonstrated by disk magnetic recording the Mrδ
has to be reduced in order to increase the linear density. Significant reduction in this
parameter would allow closely spaced magnetic transitions and enable the use of more
sensitive read head sensors such as spin valves to boost the sagging raw signal amplitude
as both the bpi and tpi increase. Calculating a limit for MP tape throws down the gauntlet
for media, head and channel developers to counter this, as was seen recently in magnetic

Figure 9. Example of a multi-channel, side-by-side architecture, thin film tape
write head as used in today’s linear tape heads [3]

118

disk. There the areal density limit was calculated to be 36Gb/in2 in 1997 [9], which is
now exceeded in today’s normal production disk drives!

Increasing the data rate by increasing the number of parallel channels involves trade offs
with tpi (i.e. capacity) if we remain with the side-by-side head stack architecture due to
the increasing span of the active channels across flexible media, which is accepted as
having somewhat poor dimensional stability. Head technology appears to be available to
meet the challenge of the multi-terabyte capacity cartridge but this target is gated by
media type and availability, and overcoming the engineering challenges of handling the
magnetic and physical properties of the media. Tape is not nearing any fundamental
scientific limits as seen in magnetic disk. Given the rather moderate areal densities
currently seen in tape systems and optimism with regard to the development of tapes with
thinner magnetic coatings, data storage systems using tape are poised to make some rapid
advances in capacity and data rate.

6. References
[1] “Magnetic tape as the mass storage medium”. T, Schwarz, Mass Storage Conference

(2000).
[2] “The future of magnetic tape”, T.Schwarz, Mass Storage Conference (2001).
[3] “Magnetic Tape Recording Technology and Devices”, R. H. Dee, Proc. Int’l Non-

Volatile Mem. Tech. Conf. pp55-64 (1998). (IEEE Cat. No. 98EX141).
[4] “The Foundations of Magnetic Recording”, J. C. Mallinson, (Second Ed.), Academic

Press (1993).

0.000

0.001

0.010

0.100

1.000

10.000

100.000

1970 1980 1990 2000 2010 2020

Year

Gb/in2

Oxide Media / Ferrite Based Heads

MP Media /
FullThin Film

(Thin Film Media/
GMR Heads)

NSIC Roadmap 1998

SONY Helical Demos
MP
Limit?

trends.xls

1

Figure 10. Areal density trends in linear tape systems

119

[5] “Investigation of particulate media with an ultra-thin magnetic layer suitable for MR
heads on a rotating drum” K. Ejiri et al, IEEE Trans. Magn. Vol.37, No. 4, pp1605-
1607 (2001) and Fuji Film press release on ‘Nano Cubic Technology’
www.fujifilm.com (2001).

[6] “The reproduction of magnetically recorded signals”, R. L. Wallace Jr., Bell Syst.
Tech J. vol.30, 1145 (1951). See also Ref. 2 p.88.

[7] “Tape Roadmap”, National Storage Industry Consortium (June, 1998).
[8] “Beyond 6.5Gbit/inch2 recording using spin valve heads in tape systems”, T. Ozue et

al (SONY), Proc. TMRC Conf., Minneapolis, MN (Aug, 2001).
[9] “Thermal stability of recorded information at high densities”, S. Charap, P.Lu and

Y.Lee, IEEE Trans. Magn. Vol. 33, No.1, pp. 978-983 (1997).

121

Efficient RAID Disk Scheduling on Smart Disks

Tai-Sheng Chang David H.C. Du
tchang@cs.umn.edu

Tel: +1-847-856-8074
Department of Computer Science and

Engineering,
University of Minnesota

200 Union Street SE #4-192
Minneapolis MN 55455

du@cs.umn.edu
Tel: +1-612-625-2560

Department of Computer Science and
Engineering,

University of Minnesota
200 Union Street SE #4-192

Minneapolis MN 55455

1. Introduction

With the emerging high-performance storage systems as well as the availability of faster
processors and high-speed networks, many applications that were only dreams a few
years ago, have become reality. For example, Digital Libraries and Digital Medical
Imaging Archive Systems have become available today. Many of these new applications
are making great impacts on the way we work and the way we live. Among the
supporting technologies, a high-performance storage system is one of the most critical
factors in these systems.

RAID (Redundant Array of Independent Disks) has been playing a very important role in
supporting high performance storage systems. It exists in storage systems ranging from
one with a couple disks to those with several terabytes capacity. RAID uses data striping
and parity information to provide higher I/O throughput on large data access and fault
tolerance against disk failure. The implementation of RAID systems can be categorized
into two different groups. The first category is the hardware RAID that uses additional
RAID controllers to manage and process most of the required tasks in a RAID system.
Those tasks include data parity computation and volume management. The other category
of RAID uses the existing CPU(s) and memory on the system instead for all the
necessary tasks (as opposed to the hardware RAID solution, we call it software RAID).
From a user’s point of view, hardware RAID solutions require RAID controllers and
increase the costs of a system; On the other hand, Software RAID solutions consume
CPU and memory resource when performing RAID operations. Therefore, the
applications running on the same hosts where the software RAID resides will suffer
performance degradation.

Fortunately, there is a new technology that provides an alternative solution between the
expensive Hardware RAID solutions and the poorer performing Software RAID
solutions. This new technology is called Disk-Based XOR. Disk-Based XOR is a
technology utilizing the capability of computation on disks. By calculating the XOR
results on disks, the CPU resource is no longer required for the computation-intensive
XOR computation in RAID systems. Another big advantage of the Disk-Based XOR
approaches is that the data amount needs to be transferred on storage channel can be
greatly reduced by as much as 50%. With traditional RAID’s, both old data and old parity

122

data have to be sent to the host or a RAID controller for new parity construction. The new
data and the new parity will be then transferred back to the target data disk and parity
disk, respectively. On the contrary, in a Disk-Based XOR RAID, only the new data and
the XOR results of the new and old data will be transferred. Therefore, with Disk-Based
XOR, up to twice as many disks could be connected to a storage channel without
saturation under the similar load. This advantage has been proved with simulation results
in an earlier study.

However, there are challenges in implementing a Disk-Based XOR RAID system.
Because XOR calculations of the new and old data will be executed on the data disk and
the results need to be transferred to the parity disk, the results have to be saved on data
disk before the results have been transferred successfully to the parity disk. It may have a
big impact on performance. Researchers have found a potential deadlock situation with
traditional single-threaded executions of SCSI commands in Disk-Based XOR RAID’s.
Some researchers proposed a different RAID parity placement on disks to avoid such a
problem. Another research showed the deadlock could be avoided with a small change on
the FC-AL protocol. A multi-threaded SCSI command execution approach has been
proposed not only to resolve the deadlock problem but also improve disk efficiency. The
approach uses a conditionally prioritized disk command queue to resolve the deadlock
problem. Simulation results were shown that such an approach outperformed a host-based
RAID.

While the proposed multi-threaded XOR approach seems promising, it does raise another
issue: The proposed conditionally prioritized disk command queue execution may
conflict with disk scheduling discipline designed to optimize disk efficiency. The conflict
is due to the fact that free cache segments may not be always available for the next new
read-modify-write command. In such a case, one of the other commands will be executed
next instead. As a result, a disk may not execute commands as efficiently as it could have
been. In this paper, we will investigate the performance impact of such scheduling
conflict and propose two new disk scheduling algorithms.

We choose a popular disk scheduling, Shortest Service Time First (or SSTF) as the base
line for comparison. This method has been widely used and shown as having good
performance in a dynamic environment where commands are arriving over time. In this
paper, we call the SSTF scheduling a Greedy Algorithm. In this scheduling, each disk
chooses the command with the shortest service time (seek time plus latency time) to be
the next command. In the case when available cache segments are not enough for next
read-modify-write operation, the command with the shortest service time among the other
commands will be chosen. This is the same as in the proposed multi-threaded approach
by other researchers in their study. The only difference is that in this paper, SSTF
scheduling discipline will be used to choose from the list of executable commands. When
no other commands are in the disk queue, a disk will be forced idle.

Two reasons may cause disk cache to build-up. The first is due to congested data links.
When the disks are putting data to cache faster than cache can transfer data to the storage
channel, the cache will be filled. This could happen when too many disks are connected
to a single storage channel. This situation can be easily avoided with proper sizing when

123

configuring a system if the traffic load can be realized. In Disk-Based XOR, there is
another possible cause. Disk cache segments filled with XOR results need to be protected
until the associated parity update is completed. Depending on the disk scheduling
discipline, a parity update command may take a long time waiting in disk queue before it
has been executed. The longer the waiting time is, the longer time the associated cache
segments on the target disk remains to be saved and protected from being used by other
commands. Our proposed approaches will intend to reduce the waiting time of the parity
updates.

The rest of this paper is organized as the following. In Section 2, we will provide a more
detailed description of Disk-Based XOR operations. In Section 3, we will also describe in
details the Greedy disk scheduling discipline and those two new enhancements. In
Section 4, we will present our simulation results to show the performance of those three
disk scheduling disciplines following an overview of our simulation model. Finally in
Section 5, we will summarize what we found in this study and conclude the paper.

2. Disk-Based XOR and Its Operations

Three new SCSI commands (see [1]) have been created for supporting the Disk-Based
XOR implementation. They are XD-write (or XDW), XP-write (or XPW), and XD-write
extend (or XDW-ext). Each XDW is always associated with one XPW command. An
XDW command consists of four operations. To begin, data (old data) will be read from
target disk to its disk buffer (disk cache). At the same time, new data will be sending
from the host to the target data disk. When both new and old data become available on
disk buffer, exclusive-or operations will be executed on the new and old data. The new
data will be written onto the disk. The results of the XOR operations, on the other hand,
will remain on the disk buffer for later use by the associated XPW. The results need to be
saved and protected on the disk buffer from being overwritten by other operations. Figure
1 shows an XDW operation.

Memory
Disk

medium

Disk
buffer

Old dataNew Data
New Data

XOR result

Figure 1: XDW Operation

Host Data Disk Drive

After an XDW command is completed, the associated XPW command will be sent to the
associated parity disk. The old parity will be read from the disk medium. At the same
time, the XOR results of the associated XDW command stored earlier on the target data
disk will be sent to the parity disk. When the XOR results and old parity information

124

become available, XOR operations will be executed. The newly derived XOR results will
be written onto the parity disk. After the XPW has completed, the disk buffer storing the
XOR results saved on the target data disk by the associated XDW will be freed. Figure 2
shows the operations of an XPW command.

New
data Disk

buffer

Figure 2: An XPW Operation

Host Data Disk Drive

Disk
buffer

XOR result

Old parity

Parity Disk Drive

XOR result (from XDW)

An XDW-ext command is a macro command that consists of one or more XDW
commands followed by the associated XPW command(s). A read-modify-write operation
on a data block can be fulfilled by an XDW-ext command.

One big advantage of the Disk-Based XOR approach is that the data amount being
transferred on storage channel can be greatly reduced by as much as 50%. With the
traditional RAID's (either hardware or software RAID's), both old data and old parity
data have to be firstly sent to the host or a RAID controller to construct the new parity
data. The new data and the newly derived parity data will be transferred back to the target
data disk and parity disk, respectively. In other words, if we need to update a block of
data, there will be four blocks of data that are required to be transferred from and to the
disks. As opposed to the traditional RAID’s, in a Disk-Based XOR RAID it only needs to
transfer the new data and the XOR results of the XDW on the storage channel. Therefore,
with Disk-Based XOR, a larger number of disks can be connected to a storage channel
before saturating it with the same disk load.

3. Two XPW-Enhanced Disk Scheduling Disciplines

Many disk scheduling disciplines have been proposed to improve disk efficiency. For
example, SCAN and C-SCAN ([2]) were proposed to reduce the seek time without
moving back and forth from one request to another. Some other approaches considered to
reduce both seek time and rotation latency (i.e. disk service time). Shortest Service Time

125

First (SSTF) is one of those approaches and has been widely used as the disk scheduling
discipline.

Before RAID was first introduced, disks operated individually and independently. There
was no correlation between any two operations on different disks in terms of their access
location on disks. RAID changed such independency. Updating a data block on one disk
in a RAID will result in updating the associated parity block that has the same Logical
Block Address (LBA) as the data blocks but resides on a different disk (parity disk).
However, most disks in a RAID (except RAID-3) are still operating independently
without coordination between disks. That is, reading the old data from a disk is
performed independently with the reading of the associated old parity data from another
disk. Because the new parity data is constructed by the old data, old parity data and the
new data, intermediate results must be saved before both the old data and old parity are
available. Without collaboration, the retrievals of the old data and old parity will be
scheduled independently on two disks. As a result, the intermediate results may have to
be saved for a long period of time. That is why most of the RAID systems require a large
amount of memory either on the RAID controller or on the host.

Such a big memory requirement is impractical in a Disk-Based XOR RAID. With a very
limited buffer space on most disks, disk buffer can be filled quickly with Disk-Based
XOR operations. When the disk buffer is full, no more commands will be executed until
some buffer becomes available. A more severe condition is that a deadlock may happen
when the buffer is full in Disk-Based XOR. That is why in [3], the proposed conditional
prioritized disk scheduling forced a disk to choose a command other than XDW-ext after
the occupancy of the disk buffer is higher than a predefined threshold. However, such an
alternation on the disk scheduling will have an impact on the disk efficiency. The disk
efficiency could be much lower when choosing a sub-optimal command.

In the following, we will introduce two XDW-enhanced algorithms. Both of them are
intended to reduce the probability of being required to make a dramatic change on disk
scheduling. As for a baseline comparison, we use a greedy algorithm with the SSTF
scheduling. The discussion of this Greedy scheduling approach is also included in the
following sections.

3.1 Greedy Disk Scheduling

The Greedy algorithm chooses the command with the shortest service time (seek time
plus latency time) to be the next command to be executed. This method has been widely
used and performs well in dynamic environment where commands are arriving over time.
We use this method as a baseline for comparison purpose.

Because cache may be filled in Disk-Base XOR as discussed in the previous section,
some modification is needed when applying the Greedy method to Disk-Based XOR
RAID’s. Each XDW-ext command requires at least two segments of cache to store data;
one for the old data from disk and another for the new data from the host (assuming
request data size is less than or equal to the segment size). Hence, we need at least two

126

segments of free cache space in order to start execution of an XDW-ext command. When
the number of available cache segments is small enough for the next XPW-ext command,
we change the Greedy Algorithm and choose the command with the shortest service time
from commands other than XDW-ext commands. The modified greedy method is used in
this paper as a performance baseline to compare with the proposed (two) enhancements.

As discussed in the previous section, one drawback of the Greedy method in Disk-Based
XOR is that when it is running out of free cache space, it has to pick a sub-optimal
command, or even worse, stay idle. In a case when there is no command other than
XDW-ext in the disk queue, the disk has to stay idle until either a new non-XDW-ext
command arrives or some cache space is freed.

One straight forward way to reduce such inefficiency is to prevent it from happening.
There are two reasons causing the cache to back up. The first is due to a congested link.
When the disks are putting data to cache faster than cache can transfer data to the storage
channel, the cache will be filled. This could happen when too many disks are connected
to a single storage channel. This problem may be eliminated with proper system sizing
when configuring a system.

In Disk-Base XOR, there is another possibility. That is when the number of outstanding
XDW-ext commands on a disk is close to the number of cache segments. An outstanding
XDW-ext command is an XDW-ext command finishing its XDW part but waiting for its
XPW part to be complete on another disk. Depending on the disk scheduling discipline,
an XPW command may take a long time waiting in disk queue before it is executed. The
longer the wait time, the longer the cache segment on the data disk needs to be saved and
protected from being used by other commands.

After understanding the cause of a long-waiting outstanding XDW-ext command, we
proposed two approaches to reduce the possibility of filled cache in Disk-Based XOR
RAID’s. The details are in the next two subsections.

3.2 An XPW Service Time Based Promotion Scheme (XPWT)

The first approach is to selectively give an XPW the higher priority. By giving XPW
commands higher priority, it helps to reduce its wait time in disk queue and as a result,
the associated XDW-ext command can be completed and release the cache space it used
earlier. However, selecting XPW should be made with caution such that the disk
efficiency will not be over-compromised. We use a relative difference in disk service
time as the criteria to give an XPW the higher priority. When an XPW has less than
smallest service time plus the predetermined time δ available, the XPW with the smallest
service time will be given the highest priority and will be executed next.

We formulate the approach proposed above in the following.

127

Let CAll

min be the command with the shortest service time TAll
min

Let CXPW
min be the XPW command with the shortest service time

among XPW commands TXPW
min.

If TXPW

min - TAll
min <= δ then choose CXPW

min to be the next
command.
Otherwise choose CAll

min.

Note that when δ equal to zero, this approach degenerates to the Greedy Algorithm. On
the other hand, when δ becomes a large number, XPW commands will be given the
higher priority all the time. For example, when δ is greater than or equal to the largest
possible disk service time, the above method will always give the higher priority to XPW
commands.

3.3 An XPW Queue Length Based Promotion Scheme (XPWQ)

The performance of the previous approach highly depends on the value of δ. Choosing a
large δ may result in lower disk efficiency but reduce the number of XPW’s in disk
queue; while choosing a small δ makes it closer to the Greedy Algorithm. Therefore, the
optimal value of δ is difficult to determine in a dynamic situation. The second approach
we are proposing in this paper is to give XPW commands the higher priority when the
number of XPW commands on a disk reaches a certain threshold. The idea is based on
the fact that with a uniformly distributed access among disks in a RAID and a large
number of XPW commands in one disk queue, the more occupied disk cache will be on
the other disks. Therefore, choosing an XPW to execute will likely help in releasing the
disk cache buffer on another disk. Furthermore, when the threshold is chosen properly,
there will be a set of XPW commands in disk queue to choose from when the number of
occupied cache segments reaches the threshold. The larger the number of XPW
commands to choose from, the closer the chosen XPW command to the optimal
command. The detailed formulation of this approach is provided in the following.

Let MaxNxpw be the threshold value of the number of XPW
commands.
Let Nxpw be the number of XPW commands in a disk command
queue.

If Nxpw <= maxNxpw then follow the Greedy Algorithm.
Otherwise, pick the XPW command with the shortest service time
of all XPW's.

Note that when the value of maxNxpw is set to zero, this approach will always choose an
XPW if one exists. On the other hand, when the value of maxNxpw is set to infinity, then
this approach will not give XPW a special higher priority at any case. Therefore it will
degenerate to the Greedy Method.

128

4. Simulation Model and Results

In this section, we will use simulation results to demonstrate the performance difference
of the three disk-scheduling disciplines discussed in the previous section. For better
understanding of the simulation results, we first provide an overview of our simulation
models in the following subsection.

4.1 Simulation Model

We used a storage subsystem simulation model to simulate operations of a storage
subsystem based on the Fibre Channel - Arbitration Loop (FC-AL) ([5]) protocol. The
model consists of three major components: A disk and its disk cache component; A
storage interface component that follows FC-AL protocol and controls data transfers
to/from the storage channel; And a command generator component that simulates a host
generating data requests.

4.1.1 Disk and Disk Cache Model

The disk model is based on an IBM Ultrastar XP 4.51GB disk. The implementation of
this disk model employs zone bit recording and non-linear seek time functions for read
and write operations using information from the disk manufacture in [6]. Table 1 shows a
summary of disk parameters used in the simulation.

Table 1: Disk Parameters
Disk Parameters Value

Capacity 4.51 GB
Rotation Speed 7202.7 RPM

Average rotation latency 4.17 ms
Seek times 0.5 – 16.5 ms

Transfer rate 5.53 – 7.48 MB/sec

Disk cache is the buffer for temporarily storing data sent to/from the storage interface. It
is partitioned into segments. Each segment consists of many 512-byte blocks. In our
simulation model, each segment will be used by one command. The cache component
also employs an LRU (Least Recently Used) cache segment replacement scheme. The
parameters that the disk cache used in the model are summarized in Table 2. In our
simulation, the number of segments is a controlled parameter. We used different numbers
of segments in order to understand the impact of cache size and disk scheduling schemes
on the system performance.

Table 2: Disk cache parameters
Disk Cache Parameter Values

Block Size 512 bytes
Number of segments Varied

Segment size 64 KB

129

4.1.2 FC-AL Model

We follow the FC-AL standard to model our disk interface. FC-AL is a protocol allowing
Fibre Channel to operate in a loop topology. It is logically located between FC-1 and FC-
2. The FC-AL component in our model consists of both Loop Port State Machine
(LPSM) and Fibre Channel Protocol for SCSI (FCP). LPSM defines the behavior of the
FC-AL loop port. It includes an arbitration protocol which determines who can access the
loop. It also includes a fairness protocol that enforces fair sharing of loop among all the
nodes. FCP is one of the Fibre Channel mapping protocols (FC-4) which uses the service
provided by FC-PH to transmit SCSI commands and data. It also transmits status
information between a SCSI initiator and a SCSI target. More details about FC-AL can
be found in [5] and [7]. Table 3 summarizes the parameters we used in the FC-AL model.

Table 3: FC-AL Simulation parameters
FC-AL Simulation Parameters Values Descriptions
Link Speed 100 MB/Sec Bandwidth of an FC-AL loop
Propagation Delay 3.5 ns Propagation delay between two nodes
Per Node delay 6 word time The delay of forwarding a frame by

interface
Fairness algorithm Enabled The fairness protocol in its arbitration

scheme

4.1.3 Command Generator

Command Generator is responsible for generating commands in our model. At the
beginning of each simulation run, it will generate the number of commands indicated by
the value of the maximum outstanding command parameter. When a command finishes,
it will generate another command immediately to maintain the maximum outstanding
commands in the system. The target disk of each command and the command’s access
location (LBA) on the disk will be randomly assigned by the command generator. The
Command generator is also responsible for sending the SCSI command response to the
target disk and generating data to be written on disks.

4.2 Simulation Results

To better understand the impact of disk scheduling on Disk-Based XOR, we conducted
simulations in many different scenarios. We compared three disk scheduling disciplines
under different system loads with different data request sizes. We also compared them in
small and large-scale storage systems. To predict the impact of the three different disk
scheduling algorithms on the Disk-Based XOR RAID performance with the high-end
disks, we further conducted simulations using a disk model with a two times
improvement in the disk rotation and seek times. By conducting these different
simulations, we hope to provide a better view of the impact of the disk scheduling on
Disk-Based XOR RAID performance and therefore, to demonstrate its importance.

130

To better present our results, we will use an eight-disk FC-AL model as a base model.
We will compare the performance by changing the system parameters such as system
load, data request size, and number of disks while keeping the other parameters the same.
As the base model, We will show the average command response time for 4KB read-
modify-write requests in the eight-disk FC-AL system. The total number of outstanding
commands was 768. That is, the number of outstanding commands was maintained at 768
after the simulation started. A new command was generated immediately after a previous
command had completed. For the XPWT scheduling, the value δ was set to 3
milliseconds. That is, an XPW command was given the higher priority over XDW
commands if its disk service time is less than the smallest service time among all the
XDW commands plus 3 milli-seconds. The maxNxpw value was set to the number of
segments minus four. That is, the XPW commands in disk command queue will be given
a higher priority when the total number of XPW commands in that disk command queue
is greater than the number of cache segments minus four. For example, if the number of
cache segments is twelve and there are more than eight XPW commands in disk queue,
the next command will be chosen from those XPW commands in the queue. In such a
case, the XPW with the shortest service time among the XPW commands will be chosen
as the next command.

The simulation result of the base model is shown in Figure 3. The XPWT Algorithm has
the least average command response time among the three on all the cache segment sizes
used in this study. It was 7% better than the Greedy algorithm when the number of
segments is eight. The results of the XPWQ Algorithm varied with the number of
segments. When the number of segments was eight, it performed closely to the XPWT
Algorithm. When the number of segments increases, the response time fell between those
of the Greedy Algorithm and the XPWT Algorithm.

Average command latency time
for 4KB request with 768

commands

2400
2600
2800
3000
3200
3400

4 8 12 16
Average latency time

Greedy
XPWT
XPWQ

Figure 3:Average command latency with 4KB requests and 768 outstanding commands.

Figure 4 shows the system throughput achieved by the three scheduling algorithms on the
base model. Since the system was loaded with a fixed number of outstanding commands
(768 commands), the throughput was highly dependent on disk efficiency. The more
efficient the disk is, the higher throughput it will generate. In Figure 4, we see that the
XPWT Scheduling had the highest throughput among the three methods and had about
7% higher throughput than that of the Greedy Method in certain cases.

131

Average system throughtput for
4KB request with 768 commands

0.85
0.9

0.95
1

1.05
1.1

1.15
1.2

1.25

4 8 12 16
Average latency time

Greedy
XPWT
XPWQ

Figure 4:Average system throughput with 4KB requests and 768 outstanding commands.

Different System Loads

To understand the impact of the three different scheduling methods under different levels
of the system loads, we also investigated the performance difference with a different
number of outstanding commands in the system. As opposed to 768 outstanding
commands, we conducted simulations with 512 outstanding commands on the 8-disk
model. Figure 5 shows the results with both 768 and 512 outstanding commands. With
512 outstanding commands, the average command latency time was about two thirds of
the time with 768 commands. The XPWT method outperformed the other two with 512
outstanding commands in all the three numbers of segments. The difference between the
Greedy Method and XPWT Method was reduced from about 7% with 768 outstanding
commands to about 5.4% with 512 outstanding commands. From the results, we found
that the larger the number of outstanding commands, the higher the performance gap is
between the XPWT method and Greedy Method. The major reason is that with more
outstanding commands, it is more likely to execute an XDW command than an XPW
command. When the cache segments are all filled, the disk will be forced to execute an
XPW command. In such a case, the efficiency of the disk will be compromised.

Average command latency time
for 4KB request with 512

commands

1650
1700
1750
1800
1850
1900
1950

4 8 12 16
Average latency time

Greedy
XPWT
XPWQ

Average command latency time
for 4KB request with 768

commands

2400
2600
2800
3000
3200
3400

4 8 12 16
Average latency time

Greedy
XPWT
XPWQ

Figure 5: Average command latency with and 512 vs. 768 outstanding commands with 4KB requests.

132

Another observation from the results is that the XPWQ method tended to be close to the
performance of the XPWT Method when the number of segments is small. On the other
hand, it tended to be close to the Greedy Method's performance when the number of
segments is large. This is because when the number of segments is large, more XPW
commands are allowed in a disk queue before they are given the higher priority.
Therefore, most of the time, the XPWQ method may perform as the Greedy Method.
While with a smaller number of segments, it is more likely to reach the maxNxpw
threshold. Therefore, it performs closer to the XPWT Method.

Large Scale Disk System

We conducted simulations on a 32-disk FC-AL model to show the performance in a
system with a larger number of disks. In order to eliminate the performance difference
resulted from disk queuing time between the eight-disk and 32-disk model, we used the
same system load on both systems. We used an average of 64 commands per disk. That
is, we used 512 outstanding commands on the eight-disk model and 2048 commands on
the 32-disk model. The results showed a similar trend to what we have observed in the
eight-disk model (See Figure 6). The XPWT Method was still the best among the three. It
is about 7% better than the Greedy Method when the number of segments was equal to
eight. The XPWQ Method performed just as well as the XPWT Method when the number
of segments was equal to eight. But the XPWT method outperformed the XPWQ method
when the number of segments became larger.

Average command latency time
for 4KB request with 8 disks and

512 commands

1650
1700
1750
1800
1850
1900
1950

4 8 12 16
Average latency time

Greedy
XPWT
XPWQ

Average command latency time
for 4KB request with 32disks and

2048 commands

1650
1700
1750
1800
1850
1900
1950

4 8 12 16
Average latency time

Greedy
XPWT
XPWQ

Figure 6: Average command latency with 8 vs. 32 disks with 4KB requests.

Large Request Size - 64KB:

With a 4 KB request size, the actual transfer time is less significant compared to the disk
seek time and latency time. Therefore, the disk scheduling has a greater impact on the
disk efficiency. As the request size increases, the data transfer time becomes larger. The
extent of the improvement with better disk scheduling may be different. To understand
the performance of the three disk scheduling disciplines with larger requests, we also
conducted simulations with 64 KB requests. The results are shown in Figure 7.

133

Average command latency time
for 4KB request with 768

commands

2400
2600
2800
3000
3200
3400

4 8 12 16
Average latency time

Greedy
XPWT
XPWQ

Average command latency time
for 64KB request with 768

commands

5400

5900

6400

6900

4 8 12 16
Average latency time

Greedy
XPWT
XPWQ

Figure 7: Average command latency with 4KB vs. 64KB.

With 64 KB requests, we observed even better improvement than 4 KB requests with
XOR-enhanced scheduling when the number of segments is small. For example, with 4
KB requests, the improvement of the XPWT Method over the Greedy Method was about
7% with 8-segment cache. While with 64 KB requests, the improvement was more than
8%. Furthermore, the XPWQ Method outperformed both the other methods and had an
improvement of close to 12% over the Greedy Method with an 8-segment cache.

Performance with the Faster Disks

Disk technologies have improved significantly over the past decades. Recently, disk
density has been doubling better than every couple years. The disk rotation speed and
seek time have also improved significantly. In this paper, we have compared the
performance comparison of different disk scheduling disciplines with disk rotation speed
that is used by most of the current off-the-shelf disk products (at the time this paper was
written). To predict their performance with the faster disk speed, we also conducted
simulation with faster disks.

In order to reuse our disk model and its very detailed seed functions and zone-bit
encoding, we modeled the next generation disks by changing the parameters in our
existing disk model. With the targeted 15000 RPM next generation disk, we believe that
by doubling the disk rotation speed and halving the seek time and data transfer time in the
disk model we have, it will give us a close approximation of the model for the next high-
end disk. Figure 8 shows the performance comparison of the three scheduling methods
with current and high-end disk models. The result is shown in Figure 8. The improvement
of the XPWT method is almost 10% better than the Greedy method. The improvement of
the XPWQ method fell between the Greedy method and XPWT method. It has about a
6.7% improvement over the Greedy method at eight segments.

134

Average command latency time
for 4KB request with 768

commands with 1x disk speed

2400
2600
2800
3000
3200
3400

4 8 12 16
Average latency time

Greedy
XPWT
XPWQ

Average command latency time
for 4KB request with 768

commands with 2x disk speed

2050
2100
2150
2200
2250
2300
2350
2400

4 8 12 16
Average latency time

Greedy
XPWT
XPWQ

Figure 8: Average command latency with 1x vs. 2x disk speed with 4KB requests.

Impact of δ value in XPWT method

In the earlier section, we mentioned that choosing a good δ in XPWT could be difficult.
To understand the impact of δ on the performance, we conducted more simulations with
different δ values in different loads and cache segments. Figure 9 shows the results of the
average latency when δ changes. The results show that when the number of outstanding
commands is 768 and the number of segments is four, we should use a greater δ value.
When the number of outstanding commands is 512, the optimal value falls when δ is
around three to four. The results also demonstrate that when the number of segments is
small, δ should be set to a greater value. In Figure 9, it seems that setting δ to 3 could
provide a performance gain close to optimal except when the number of outstanding
commands is 768 and the number of cache segments is four.

Average latency time with 768
outstanding commands

2400
2600
2800
3000
3200
3400

0 2 4 6 8

number of cache segements

4
8
16

Average latency time with 512
outstanding commands

1650
1700
1750
1800
1850
1900
1950

0 5 10

number of cache segments

8
16

Figure 9: Average command latency with 1x vs. 2x disk speed with 4KB requests.

5. Conclusion

In this paper, we have discussed the uniqueness of Disk-Based XOR operations on disk
scheduling and its impact on disk efficiency. We have proposed two XPW-enhanced disk
scheduling disciplines that are designed to improve the disk efficiency on Disk-Based

135

XOR RAID’s. We have demonstrated their performance results by simulations. We have
investigated the performance of the proposed XPW-enhanced disk scheduling as well as
the SSTF approach serving as the baseline performance. We have conducted simulations
under different scenarios such as different scales of storage system, different system
loads, different request sizes, and even with high-end disk technologies. We have
demonstrated using simulation results that the performance was consistently improved
with those two XPW-enhanced approaches throughout all the cases. The results showed
that the improvement could be as much as 12%.

As the disk technologies continue to improve rapidly, it has been predicted that a one
terabyte disk costing below one hundred dollars could be on the market in less than five
years. With the price of disk going lower and lower, and the capacity of disks going
higher and higher, it becomes more important to have a better RAID solution. Disk-
Based XOR provides a promising lower-cost high-performance alternative. We hope that
the study we have presented in this paper could open a door to finding better RAID
solutions.

References

[1] Gerry Houlder, Jay Elrod, and Mike Miller, "XOR Commands on SCSI Disk Drives",
X3T10/94-111r9.

[2] Avi Silberschatz and Peter Galvin, "Operating System Concepts", Addition-Wesley
Publishing Company, Inc. fourth Edition, 1995.

[3] Sangyup Shim, Yuewei Wang, Jenwei Hsieh, Tai-Sheng Chang, and David H.C. Du,
"Efficient Implementation of RAID-5 Using Disk Based Read Modify Writes" Technical
Report, Department of Computer Science, University of Minnesota, 1996.

[4] Tai-Sheng Chang, Sangyup Shim, and David H.C. Du, "The Designs of RAID with
XOR Engines on Disks for Mass Storage Systems", Sixth NASA Goddard Conference on
Mass Storage Systems and Technologies in Cooperation with the Fifteenth IEEE
Symposium on Mass Storage Systems, March 22- 24, 1998, College Park, Maryland.}

[5] David H.C. Du, Tai-Sheng Chang, Jenwei Hsieh, Yuewei Wang and Simon Shim.
"Emerging Serial Storage Interfaces: Serial Storage Architecture (SSA) and Fibre
Channel - Arbitrated Loop (FC-AL)", TR 96-073, Technical Report, Department of
Computer Science, University of Minnesota}

[6] IBM Corporation, "Functional Specification, Ultrastar XP Models", 1995.

[7] David H.C. Du, Jenwei Hsieh, Tai-Sheng Chang, Yuewei Wang and Simon Shim,
"Performance Study of Serial Storage Architecture (SSA) and Fibre Channel - Arbitrated
Loop (FC-AL)”, to appear in IEEE Concurrency

Experimentally Evaluating In-Place Delta Reconstruction

Randal Burns Larry Stockmeyer Darrell D. E. Long
Dept. of Computer Science Dept. of Computer Science Dept. of Computer Science

Johns Hopkins Univ. IBM Almaden Research Center Univ. of California, Santa Cruz
randal@cs.jhu.edu stock@almaden.ibm.com darrell@cs.ucsc.edu

Abstract

In-place reconstruction of delta compressed data allows information on devices with lim-
ited storage capability to be updated efficiently over low-bandwidth channels. Delta compres-
sion encodes a version of data compactly as a small set of changes from a previous version.
Transmitting updates to data as delta versions saves both time and bandwidth. In-place re-
construction rebuilds the new version of the data in the storage or memory space the current
version occupies – no additional scratch space is needed. By combining these technologies,
we support large-scale, highly-mobile applications on inexpensive hardware.

We present an experimental study of in-place reconstruction algorithms. We take a data-
driven approach to determine important performance features, classifying files distributed on
the Internet based on their in-place properties, and exploring the scaling relationship between
files and data structures used by in-place algorithms. We conclude that in-place algorithms are
I/O bound and that the performance of algorithms is most sensitive to the size of inputs and
outputs, rather than asymptotic bounds.

1 Introduction

We develop algorithms for data distribution and version management to be used for highly-mobile
and resource-limited computers over low-bandwidth networks. The software infrastructure for
Internet-scale file sharing is not suitable for this class of applications, because it makes demands
for network bandwidth and storage/memory space that many small computers and devices cannot
meet.

While file sharing is proving to be the new prominent application for the Internet, it is limited
in that data are not writable nor are versions managed. The many recent commercial and freely
available systems underscore this point, examples include Freenet [1] and GnuTella [2]. Writable
replicas greatly increase the complexity of file sharing – problems include update propagation and
version control.

Delta compression has proved a valuable tool for managing versions and propagating up-
dates in distributed systems and should provide the same benefits for Internet file sharing. Delta-
compression has been used to reduce latency and network bandwidth for Web serving [4, 20] and
backup and restore [6].

Our in-place reconstruction technology addresses one of delta compression’s major shortcom-
ings. Delta compression makes memory and storage demands that are not reasonable for low-cost,

137

low-resource devices and small computers. In-place reconstruction allows a version to be updated
by a delta in the memory or storage that it currently occupies; reconstruction needs no additional
scratch space or space for a second copy. An in-place reconstructible delta file is a permuta-
tion and modification of the original delta file. This conversion comes with a small compression
penalty. In-place reconstruction brings the latency and bandwidth benefits of delta compression
to the space-constrained, mass-produced devices that need them the most, such as personal digital
assistants, cellular phones, and wireless handhelds.

A distributed inventory management system based on mobile-handheld devices is an archetypal
application for in-place technology. Many limited-capacity devices track quantities throughout
an enterprise. To reduce latency, these devices cache portions of the database for read-only and
update queries. Each device maintains a radio link to update its cache and run a consistency
protocol. In-place reconstruction allows the devices to keep their copies of data consistent using
delta compression without requiring scratch space, thereby increasing the cache utilization at target
devices. Any available scratch space can be used to reduce compression loss, but no scratch space
is required for correct operation. We observe that in-place reconstruction applies to both structured
data (databases) and unstructured data (files), because they manipulate a delta encoding, as opposed
to the original data. While algorithms for delta compressing structured data are different [9], they
employ encodings that are suitable for in-place techniques.

1.1 Delta Compression and In-Place Reconstruction

Recent developments in portable computing and computing appliances have resulted in a prolif-
eration of small network attached computing devices. These include personal digital assistants
(PDAs), Internet set-top boxes, network computers, control devices, and cellular devices. The data
contents of these devices are often updated by transmitting the new version over a network. How-
ever, low bandwidth channels and heavy Internet traffic often makes the time to perform software
update prohibitive.

Differential or delta compression [3, 13, 9, 8], encoding a new version of a file compactly as a
set of changes from a previous version, reduces the size of the transmitted file and, consequently,
the time to perform software update. Currently, decompressing delta encoded files requires scratch
space, additional disk or memory storage, used to hold a second copy of the file. Two copies of
the file must be available concurrently, as the delta file reads data from the old file version while
materializing the new file version in another region of storage. This presents a problem because
network attached devices often cannot store two file versions at the same time. Furthermore, adding
storage to network attached devices is not viable, because keeping these devices simple limits their
production costs.

We modify delta encoded files so that they are suitable for reconstructing the new version of the
file in-place, materializing the new version in the same memory or storage space that the previous
version occupies. A delta file encodes a sequence of instructions, or commands, for a computer
to materialize a new file version in the presence of a reference version, the old version of the file.
When rebuilding a version encoded by a delta file, data are both copied from the reference version
to the new version and added explicitly when portions of the new version do not appear in the
reference version.

If we were to attempt naively to reconstruct an arbitrary delta file in-place, the resulting output

138

would often be corrupt. This occurs when the delta encoding instructs the computer to copy data
from a file region where new file data has already been written. The data the algorithms reads have
already been altered and the algorithm rebuilds an incorrect file.

We present a graph-theoretic algorithm for modifying delta files that detects situations where a
delta file attempts to read from an already written region and permutes the order that the algorithm
applies commands in a delta file to reduce the occurrence of conflicts. The algorithm eliminates
the remaining conflicts by removing commands that copy data and adding explicitly these data to
the delta file. Eliminating data copied between versions increases the size of the delta encoding
but allows the algorithm to output an in-place reconstructible delta file.

Experimental results verify the viability and efficiency of modifying delta files for in-place
reconstruction. Our findings indicate that our algorithm exchanges a small amount of compression
for in-place reconstructibility.

Experiments also reveal an interesting property of these algorithms that conflicts with algo-
rithmic analysis. We show in-place reconstruction algorithms to be I/O bound. In practice, the
most important performance factor is the output size of the delta file. This means that heuristics
for eliminating data conflicts that minimize lost compression are superior to more time efficient
heuristics that lose more compression. Any time saved in detecting and eliminating conflicts is lost
when writing a larger delta file out to storage.

2 Related Work

Encoding versions of data compactly by detecting altered regions of data is a well known problem.
The first applications of delta compression found changed lines in text data for analyzing the recent
modifications to files [11]. Considering data as lines of text fails to encode minimum sized delta
files, as it does not examine data at a fine granularity and finds only matching data that are aligned
at the beginning of a new line.

The problem of representing the changes between versions of data was formalized as string-
to-string correction with block move [24] – detecting maximally matching regions of a file at
an arbitrarily fine granularity without alignment. However, delta compression continued to rely
on the alignment of data, as in database records [23], and the grouping of data into block or line
granularity, as in source code control systems [22, 25], to simplify the combinatorial task of finding
the common and different strings between versions.

Efforts to generalize delta compression to un-aligned data and to minimize the granularity of
the smallest change resulted in algorithms for compressing data at the granularity of a byte. Early
algorithms were based upon either dynamic programming [19] or the greedy method [24, 21, 17]
and performed this task using time quadratic in the length of the input files.

Delta compression algorithms were improved to run in linear time and linear space. Algorithms
with these properties have been derived from suffix trees [27, 18, 16] and as a generalization of
Lempel-Ziv data compression [12, 13, 8]. Like algorithms based on greedy methods and dynamic
programming, these algorithms generate optimally compact delta encodings.

Recent advances produced algorithms that run in linear time and constant space [3]. These
differencing algorithms trade a small amount of compression, verified experimentally, in order to
improve performance.

Any of the linear run-time algorithms allow delta compression to scale to large input files

139

B

VC

VD

VE

VA

BR

RC

DR

RA VA VB VA,< >-

VBRA BR RA,< , - >

,< >- VVVC D C

,< >-V V VE F E

V

Delta File

Matching

Matching

String

String

Add

Copy

Add

Add

Copy

Add Data

Add Data

,< , - >R V R RC D D C

Reference File Version File

Figure 1: Encoding delta files. Common strings are encoded as copy commands hf; t; li and new
strings in the new file are encoded as add commands ht; li followed by the string of length l of
added data.

without known structure and permits the application of delta compression to file system backup
and restore [6].

Recently, applications distributing HTTP objects using delta files have emerged [20, 4]. This
permits web servers to both reduce the amount of data transmitted to a client and reduce the latency
associated with loading web pages. Efforts to standardize delta files as part of the HTTP protocol
and the trend toward making small network devices HTTP compliant indicate the need to distribute
data to network devices efficiently.

3 Encoding Delta Files

Differencing algorithms encode the changes between two file versions compactly by finding strings
common to both versions. We term these files a version file that contains the data to be encoded
and a reference file to which the version file is compared. Differencing algorithms encode a file
by partitioning the data in the version file into strings that are encoded using copies from the
reference file and strings that are added explicitly to the version file (Figure 1). Having partitioned
the version file, the algorithm outputs a delta file that encodes this version. This delta file consists
of an ordered sequence of copy commands and add commands.

An add command is an ordered pair, ht; li, where t (to) encodes the string offset in the file
version and l (length) encodes the length of the string. The l bytes of data to be added follow the
command. A copy command is an ordered triple, hf; t; li where f (from) encodes the offset in the
reference file from which data are copied, t encodes the offset in the new file where the data are to
be written, and l encodes the length of the data to be copied. The copy command moves the string
data in the interval [f; f + l� 1] in the reference file to the interval [t; t+ l� 1] in the version file.

In the presence of the reference file, a delta file rebuilds the version file with add and copy
commands. The intervals in the version file encoded by these commands are disjoint. Therefore,
any permutation of the command execution order materializes the same output version file.

140

C1 C2

(a) Delta copy

conflict corrupt

C2C1

(b) In-place copy

Figure 2: Data conflict and corruption when performing copy command C1 before C2.

4 In-Place Modification Algorithms

An in-place modification algorithm changes an existing delta file into a delta file that reconstructs
correctly a new file version in the space the current version occupies. At a high level, our technique
examines the input delta file to find copy commands that read from the write interval (file address
range to which the command writes data) of other copy commands. The algorithm represents
potential data conflicts in a digraph. The algorithm topologically sorts the digraph to produce an
ordering on copy commands that reduces data conflicts. We eliminate the remaining conflicts by
converting copy commands to add commands. The algorithm outputs the permuted and converted
commands as an in-place reconstructible delta file. Actually, as described in more detail below, the
algorithm performs permutation and conversion of commands concurrently.

4.1 Conflict Detection

Since we reconstruct files in-place, we concern ourselves with ordering commands that attempt
to read a region to which another command writes. For this, we adopt the term write before read
(WR) conflict [5]. For copy commands hfi; ti; lii and hfj; tj; lji, with i < j, a WR conflict occurs
when

[ti; ti + li � 1] \ [fj; fj + lj � 1] 6= ;: (1)

In other words, copy command i and j conflict if i writes to the interval from which j reads
data. By denoting, for each copy command hfk; tk; lki, the command’s read interval as Readk =
[fk; fk + lk � 1] and its write interval as Writek = [tk; tk + lk � 1], we write the condition (1) for
a WR conflict as Writei \ Readj 6= ;. In Figure 2, commands C1 and C2 executed in that order
generate a data conflict (blacked area) that corrupts data when a file is reconstructed in place.

This definition considers only WR conflicts between copy commands and neglects add com-
mands. Add commands write data to the version file; they do not read data from the reference
file. Consequently, an algorithm avoids all potential WR conflicts associated with adding data by
placing add commands at the end of a delta file. In this way, the algorithms completes all reads
associated with copy commands before executing the first add command.

Additionally, we define WR conflicts so that a copy command cannot conflict with itself. Yet,
a single copy command’s read and write intervals intersect sometimes and would seem to cause a
conflict. We deal with read and write intervals that overlap by performing the copy in a left-to-right
or right-to-left manner. For command hf; t; li, if f � t, we copy the string byte by byte starting at
the left-hand side when reconstructing the original file. Since, the f (from) offset always exceeds
the t (to) offset in the new file, a left-to-right copy never reads a byte over-written by a previous
byte in the string. When f < t, a symmetric argument shows that we should start our copy at the

141

right hand edge of the string and work backwards. For this example, we performed the copies in a
byte-wise fashion. However, the notion of a left-to-right or right-to-left copy applies to moving a
read/write buffer of any size.

To avoid WR conflicts and achieve the in-place reconstruction of delta files, we employ the
following three techniques.

1. Place all add commands at the end of the delta file to avoid data conflicts with copy com-
mands.

2. Permute the order of application of the copy commands to reduce the number of write before
read conflicts.

3. For remaining WR conflicts, remove the conflicting operation by converting a copy command
to an add command and place it at the end of the delta file.

For many delta files, no possible permutation eliminates all WR conflicts. Consequently, we require
the conversion of copy commands to add commands to create correct in-place reconstructible files
for all inputs.

Having processed a delta file for in-place reconstruction, the modified delta file obeys the prop-
erty

(8j)

"
Readj \

j�1[
i=1

Writei

!
= ;

#
; (2)

indicating the absence of WR conflicts. Equivalently, it guarantees that a copy command reads and
transfers data from the original file.

4.2 CRWI Digraphs

To find a permutation that reduces WR conflicts, we represent potential conflicts between the copy
commands in a digraph and topologically sort this digraph. A topological sort on digraph G =
(V;E) produces a linear order on all vertices so that if G contains edge

!

uv then vertex u precedes
vertex v in topological order.

Our technique constructs a digraph so that each copy command in the delta file has a cor-
responding vertex in the digraph. On this set of vertices, we construct an edge relation with a
directed edge

!

uv from vertex u to vertex v when copy command u’s read interval intersects copy
command v’s write interval. Edge

!

uv indicates that by performing command u before command v,
the delta file avoids a WR conflict. We call a digraph obtained from a delta file in this way a con-
flicting read write interval (CRWI) digraph. A topologically sorted version of this graph adheres
to the requirement for in-place reconstruction (Equation 2).

4.3 Strategies for Breaking Cycles

As total topological orderings are possible only on acyclic digraphs and CRWI digraphs may con-
tain cycles, we enhance a standard topological sort to break cycles and output a total topological
order on a subgraph. Depth-first search implementations of topological sort [10] are modified
easily to detect cycles. Upon detecting a cycle, our modified sort breaks the cycle by removing a
vertex. When completing this enhanced sort, the sort outputs a digraph containing a subset of all

142

vertices in topological order and a set of vertices that were removed. This algorithm re-encodes
the data contained in the copy commands of the removed vertices as add commands in the output.

As the string that contains the encoded data follows converted add, this replacement reduces
compression in the delta file. We define the amount of compression lost upon deleting a vertex
to be the cost of deletion. Based on this cost function, we formulate the optimization problem of
finding the minimum cost set of vertices to delete to make a digraph acyclic. A copy command is
an ordered triple hf; t; li. An add command is an ordered double ht; li followed by the l bytes of
data to be added to the new version of the file. Replacing a copy command with an add command
increases the delta file size by l � kfk, where kfk denotes the size of the encoding of offset f .
Thus, the vertex that corresponds to the copy command hf; t; li is assigned cost l � kfk.

When converting a digraph into an acyclic digraph by deleting vertices, an in-place conversion
algorithm minimizes the amount of compression lost by selecting a set of vertices with the smallest
total cost. This problem, called the FEEDBACK VERTEX SET problem, was shown by Karp [14]
to be NP-hard for general digraphs. We have shown previously [7] that it remains NP-hard even
when restricted to CRWI digraphs. Thus, we do not expect an efficient algorithm to minimize the
cost in general.

For our implementation of in-place conversion, we examine two efficient, but not optimal,
policies for breaking cycles. The constant-time policy picks the “easiest” vertex to remove, based
on the execution order of the topological sort, and deletes this vertex. This policy performs no
extra work when breaking cycles. The local-minimum policy detects a cycle and loops through all
vertices in the cycle to determine and then delete the minimum cost vertex. The local-minimum
policy may perform as much additional work as the total length of cycles found by the algorithm:
O(n2). Although these policies perform well in our experiments, we have shown previously [7]
that they do not guarantee that the total cost of deletion is within a constant factor of the optimum.

4.4 Generating Conflict Free Permutations

Our algorithm for converting delta files into in-place reconstructible delta files takes the follow-
ing steps to find and eliminate WR conflicts between a reference file and the new version to be
materialized.

Algorithm

1. Given an input delta file, we partition the commands in the file into a setC of copy commands
and a set A of add commands.

2. Sort the copy commands by increasing write offset, Csorted = fc1; c2; :::; cng. For ci and cj,
this set obeys: i < j ! ti < tj . Sorting the copy commands allows us to perform binary
search when looking for a copy command at a given write offset.

3. Construct a digraph from the copy commands. For the copy commands c1; c2; :::; cn, we
create a vertex set V = fv1; v2; :::; vng. Build the edge set E by adding an edge from vertex
vi to vertex vj when copy command ci reads from the interval to which cj writes:

�!

vivj ! Readi \Writej 6= ; ! [fi; fi + li � 1] \ [tj; tj + lj � 1] 6= ;:

143

0

5000

10000

15000

20000

25000

30000

35000

40000

Figure 3: File counts and data size.

4. Perform a topological sort on the vertices of the digraph. This sort also detects cycles in the
digraph and breaks them. When breaking a cycle, select one vertex on the cycle, using either
the local-minimum or constant-time cycle breaking policy, and remove it. We replace the
data encoded in its copy command with an equivalent add command, which is put into set
A. The output of the topological sort orders the remaining copy commands so that they obey
the property in Equation 2.

5. Output all add commands in the set A to the delta file.

The resulting delta file reconstructs the new version out of order, both out of write order in the
version file and out of the order that the commands appeared in the original delta file.

5 Experimental Results

As we are interested in using in-place reconstruction to distribute software, we extracted a large
body of Internet available software and examined the compression and execution time performance
of our algorithm on these files. Sample files include multiple versions of the GNU tools and the
BSD operating system distributions, among other data, with both binary and source files being
compressed and permuted for in-place reconstruction. These data were examined with the goals
of:

� determining the compression loss due to making delta files in-place reconstructible;

� comparing the the constant-time and local-minimum policies for breaking cycles;

� showing in-place conversion algorithms to be efficient when compared with delta compres-
sion algorithms on the same data; and

� characterizing the graphs created by the algorithm.

In all cases, we obtained the original delta files using the correcting 1.5-pass delta compression
algorithm [3].

We categorize the delta files in our experiments into 3 groups that describe what operations
were require to make files in-place reconstructible. Experiments were conducted over more than

144

(a) Delta size (b) Delta compression

Figure 4: Compression performance

34,000 delta files totaling 6.5MB (Megabytes). Of these files (Figure 3), 63% of the files contained
cycles that needed to be broken. 29% did not have cycles, but needed to have copy commands
reordered. The remaining 8% of files were trivially in-place reconstructible; i.e., none of the copy
commands conflicted. For trivial files, performing copies before adds creates an in-place delta.

The amount of data in files is distributed differently across the three categories than are the file
counts. Files with cycles contain over 4MB of data with an average file size of 31.4KB. Files that
need copy commands reordered hold 1.9MB of data, with an average file size of 11.6KB. Trivially
in-place reconstructible files occupy 585KB of data with an average file size of 10.2KB.

The distribution of files and data across the three categories confirms that efficient algorithms
for cycle breaking and command reordering are needed to deliver delta compressed data in-place.
While most delta files do not contain cycles, those that do have cycles contain the majority of the
data.

We group compression results into the same categories. Figure 4(a) shows the relative size of
the delta files and Figure 4(b) shows compression (size of delta files as a fraction of the original
file size). For each category and for all files, we report data for four algorithms: the unmodi-
fied correcting 1.5-pass delta compression algorithm [3] (HPDelta); the correcting 1.5-pass delta
compression algorithm modified so that code-words are in-place reconstructible (IP-HPDelta); the
in-place modification algorithm using the local-minimum cycle breaking policy (IP-Lmin); and the
in-place modification algorithm using the constant-time cycle breaking policy (IP-Const).

The HPDelta algorithm is a linear time, constant space algorithm for generating delta com-
pressed files. It outputs copy and add commands using a code-word format similar to industry
standards [15].

The IP-HPDelta algorithm is a modification of HPDelta to output code-words that are suitable
for in-place reconstruction. Throughout this paper, we have described add commands ht; li and
copy commands hf; t; li, where both commands encode explicitly the to t or write offset in the
version file. However, delta algorithms that reconstruct data in write order need not explicitly
encode a write offset – an add command can simply be hli and a copy command hf; li. Since
commands are applied in write order, the end offset of the previous command implies the write
offset of the current command implicitly. The code-words of IP-HPDelta are modified to make
the write offset explicit. The explicit write offset allows our algorithm to reorder copy commands.
This extra field in each code-word introduces a per-command overhead in a delta file. The amount

145

(a) Overhead (b) Breakdown

Figure 5: Run-time results

of overhead varies, depending upon the number of commands and the original size of the delta file.
Encoding overhead incurs a 3% compression loss over all files.

From the IP-HPDelta algorithm, we derive the IP-Const and IP-Lmin algorithms. They run
the IP-HPDelta algorithm to generate a delta file and then permute and modify the commands
according to our technique to make the delta file in-place reconstructible. The IP-Const algorithm
implements the constant-time policy and the IP-Lmin algorithm implements the local-minimum
policy.

Experimental results indicate the amount of compression lost due to in-place reconstruction and
divides the loss into encoding overhead and cycle breaking. Over all files, HPDelta compresses
data to 12.9% its original size. IP-HPDelta compresses data to 15.9%, losing 3% compression
to encoding overhead. IP-Const loses an additional 3.4% compression by breaking cycles for a
total compression loss of 6.4%. In contrast, IP-Lmin loses less than 0.5% compression for a total
loss of less than 3.5%. The local-minimum cycle breaking policy performs excellently in practice,
because compression losses are small when compared with encoding overheads. With IP-Lmin,
cycle breaking accounts for less than 15% of the loss. IP-Const more than doubles the compression
loss.

For reorder and trivial in-place delta files, no cycles are present and no compression lost. En-
coding overhead makes up all lost compression – 0.5% for trivial delta files and 1.8% for reordered
files.

Files with cycles exhibit an encoding overhead of 3.8% and lose 5.4% and 0.7% to cycle break-
ing for the IP-Const and IP-Lmin respectively. Because files with cycles contain the majority of
the data, the results for files with cycles dominate the results for all files.

In-place algorithms incur execution time overheads when performing additional I/O and when
permuting the commands in a delta file. An in-place algorithm must generate a delta file and then
modify the file to have the in-place property. Since a delta file does not necessarily fit in memory,
in-place algorithms create an intermediate file that contains the output of the delta compression
algorithm. This intermediate output serves as the input for the algorithm that modifies/permutes
commands. We present execution-time results in Figure 5(a) for both in-place algorithms – IP-
Const and IP-Lmin. IP-Lmin and IP-Const perform all of the steps of the base algorithm (IP-
HPDelta) before manipulating the intermediate file. Results show that the extra work incurs an

146

0 2000 4000 6000 8000 1000012000140001600018000
0

0.5

1

1.5

2

2.5

3

3.5

4x 10
5

File Size (bytes)

D
at

a
ra

te
 (

by
te

s/
se

c)
IP−HPDelta
IP−LMin
IP−Const

(a) File Size

0 100 200 300 400 500
0

0.5

1

1.5

2

x 10
5

Number of vertices

D
at

a
ra

te
 (

by
te

s/
se

c)

IP−HPDelta
IP−LMin
IP−Const

(b) Vertices

0 100 200 300 400 500
0

0.5

1

1.5

2

x 10
5

Number of Edges

D
at

a
ra

te
 (

by
te

s/
se

c)

IP−HPDelta
IP−LMin
IP−Const

(c) Edges

Figure 6: Run-time results

overhead of about 75%. However, figure 5(b) shows that almost all of this overhead comes from
additional I/O. We conclude that the algorithmic tasks for in-place reconstruction are small when
compared with the effort compressing data (about 10% the run-time) and miniscule compared to
the costs of performing file I/O.

Despite inferior worst-case run-time bounds, the local-minimum cycle breaking policy runs
faster than the constant-time policy in practice. Because file I/O dominates the run-time costs and
because IP-Lmin creates a smaller delta file, it takes less total time than the theoretically superior
IP-Const. In fact, IP-Const spends 2.2% more time performing I/O as a direct result of the files
being 2.9% larger. IP-Lmin even uses slightly less time performing computation than IP-Const,
which has to manipulate more data in memory.

Examining run-time results in more detail continues to show that IP-Lmin outperforms IP-
Const, even for the largest and most complex input files. In Figure 6, we see how run-time perfor-
mance varies with the input file size and with the size of the graph the algorithm creates (number
of edges and vertices); these plots measure run time by data rate – file size (bytes) divided by run
time (seconds).

Owing to start-up costs, data rates increase with file size up to a point, past which rates tend
to stabilize. The algorithms must load and initialize data structures. For small files, these costs
dominate, and data rates are lower and increase linearly with the file size (Figure 6(a)). For files
larger than 2000 bytes, rates tend to stabilize, exhibiting some variance, but neither increasing or
decreasing as a trend. These results indicate that for inputs that amortize start-up costs, in-place
algorithms exhibit a data rate that does not vary with the size of the input – a known property of
the HPDelta algorithm [3]. IP-Lmin performs slightly better than IP-Const always.

The performance of all algorithms degrades as the size of the CRWI graphs increase. Figure
6(b) shows the relative performance of the algorithms as a function of the number of vertices, and
Figure 6(c) shows this for the number of edges. For smaller graphs, performance degrades quickly
as the graph size increases. For larger graphs, performance degrades more slowly. The graph size
corresponds directly to the number of copy commands in a delta file. The more commands, the
more I/O operations the algorithm must execute. Often more vertices means more small I/O rather
than fewer large I/O, resulting in lower data rates.

Surprisingly, IP-Lmin continues to out-perform IP-Const even for the largest graphs. Analysis
would indicate that the performance of IP-Lmin and IP-Const should diverge as the number of

147

10
0

10
1

10
2

10
3

10
4

10
510

0

10
1

10
2

10
3

10
4

10
5

Vertices

E
dg

es

(a) Edges versus Vertices

10
0

10
2

10
4

10
610

0

10
1

10
2

10
3

10
4

10
5

10
6

File Size (bytes)

E
dg

es

(b) Edges versus File Size

Figure 7: Edges in delta files that contain cycles.

edges increase. But no evidence of divergent performance exists. We attribute this to two factors:
(1) graphs are relatively small and (2) all algorithms are I/O bound.

In Figure 7, we look at some statistical measures of graphs constructed when creating in-
place delta files, restricted to those graphs that contain cycles. While graphs can be quite large, a
maximum of 11503 vertices and 16694 edges, the number of edges scales linearly with the number
of vertices and less than linearly with input file size. The constructed graphs do not exhibit edge
relations that approach the O(jV j2) upper bound. Therefore, data rate performance should not
degrade as the number of edges increases. For example consider two files as inputs to the IP-Lmin
algorithm – one with a graph that contains twice the edges of the other. Based on our result, we
expect the larger graph to have twice as many vertices and encode twice as much data. While the
larger instance does twice the work breaking cycles, it benefits from reorganizing twice as much
data, realizing the same data rate.

The linear scaling of edges with vertices and file size matches our intuition about the nature
of delta compressed data. Delta compression encodes multiple versions of the same data. There-
fore, we expect matching regions between these files (encoded as edges in a CRWI graph) to have
spatial locality; i.e., the same string often appears in the same portion of a file. These input data
do not exhibit correlation between all regions of a file which would result in dense edge relations.
Additionally, delta compression algorithms localize matching between files, correlating or syn-
chronizing regions of file data [3]. All of these factors result in the linear scaling that we observe.

6 Conclusions

We have presented algorithms that modify delta files so that the encoded version may be recon-
structed in the absence of scratch memory or storage space. Such an algorithm facilitates the dis-
tribution of software to network attached devices over low bandwidth channels. Delta compression
lessens the time required to transmit files over a network by encoding the data to be transmitted
compactly. In-place reconstruction exchanges a small amount of compression in order to do so
without scratch space.

Experimental results indicate that converting a delta file into an in-place reconstructible delta
file has limited impact on compression, less than 4% in total with the majority of compression

148

loss from encoding overheads rather than modifications to the delta file. We also find that for
bottom line performance keeping delta files small to reduce I/O matters more than execution time
differences in cycles breaking heuristics, because in-place reconstruction is I/O bound. For overall
performance, the algorithm to convert a delta file to an in-place reconstructible delta file requires
less time than generating the delta file in the first place.

In-place reconstructible delta file compression provides the benefits of delta compression for
data distribution to an important class of applications – devices with limited storage and memory.
In the current network computing environment, this technology decreases greatly the time to dis-
tribute content without increasing the development cost or complexity of the receiving devices.
Delta compression provides Internet-scale file sharing with improved version management and up-
date propagation, and in-place reconstruction delivers the technology to the resource constrained
computers that need it most.

7 Future Directions

Detecting and breaking conflicts at a finer granularity can reduce lost compression when breaking
cycles. In our current algorithms, we eliminate cycles by converting copy commands into add
commands. However, typically only a portion of the offending copy command actually conflicts
with another command; only the overlapping range of bytes. We propose, as a simple extension,
to break a cycle by converting part of a copy command to an add command, eliminating the graph
edge (rather than a whole vertex as we do today), and leaving the remaining portion of the copy
command (and its vertex) in the graph. This extension does not fundamentally change any of our
algorithms, only the cost function for cycle breaking.

As a more radical departure from our current model, we are exploring reconstructing delta files
with bounded scratch space, as opposed to zero scratch space as with in-place reconstruction. This
formulation, suggested by Martı́n Abadi, allows an algorithm to avoid WR conflicts by moving
regions of the reference file into a fixed size buffer, which preserves reference file data after that
region has been written. The technique avoids compression loss by resolving data conflicts without
eliminating copy commands.

Reconstruction in bounded space is logical, as target devices often have a small amount of
available space that can be used advantageously. However, in-place reconstruction is more gen-
erally applicable. For bounded space reconstruction, the target device must contain enough space
to rebuild the file. Equivalently, an algorithm constructs a delta file for a specific space bound.
Systems benefit from using the same delta file to update software on many devices. For exam-
ple, distributing an updated product list to many PDAs in the same sales force. In such cases,
in-place reconstruction offers a lowest common denominator solution in exchange for a little lost
compression.

We also are developing algorithms that can perform peer-to-peer style delta compression [26]
in an in-place fashion. This allows delta compression to be used between two versions of a file
stored on separate machines and is often a more natural formulation, because it does not require a
computer to maintain the original version of data to employ delta compression. This works well
for file systems, most of which do not handle multiple versions.

Our ultimate goal is to use in-place algorithms as a basis for a data distribution system. The
system will operate both in hierarchical (client/server) and peer-to-peer modes. It will also conform

149

to Internet standards [15] and, therefore, work seamlessly with future versions of HTTP.

References

[1] The free network project – rewiring the Internet. Technical Report http://freenet.sourceforge.net/,
2001.

[2] The gnutella protocol specification. Technical Report http://www.gnutelladev.com/protocol/gnutella-
protocol.html, 2001.

[3] M. Ajtai, R. Burns, R. Fagin, D. D. E. Long, and L. Stockmeyer. Compactly encoding unstructured in-
put with differential compression. www.almaden.ibm.com/cs/people/stock/diff7.ps,
IBM Research Report RJ 10187, April 2000 (revised Aug. 2001).

[4] G. Banga, F. Douglis, and M. Rabinovich. Optimistic deltas for WWW latency reduction. In Proceed-
ings of the 1998 Usenix Technical Conference, 1998.

[5] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in Database
Systems. Addison–Wesley Publishing Co., 1987.

[6] R. C. Burns and D. D. E. Long. Efficient distributed backup and restore with delta compression. In
Proceedings of the Fifth Workship on I/O in Parallel and Distributed Systems, San Jose, CA, November
1997.

[7] R. C. Burns and D. D. E. Long. In-place reconstruction of delta compressed files. In Proceedings of
the Seventeenth ACM Symposium on Principles of Distributed Computing, 1998.

[8] M. Chan and T. Woo. Cache-based compaction: A new technique for optimizing web transfer. In
Proceedings of the IEEE Infocom ’99 Conference, New York, NY, March 1999.

[9] S. S. Chawathe and H. Garcia-Molina. Meaningful change detection in structured data. In Proceedings
of the ACM SIGMOD International Conference on the Management of Data, May 1997.

[10] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT Press, Cambridge,
MA, 1990.

[11] S. P. de Jong. Combining of changes to a source file. IBM Technical Disclosure Bulletin, 15(4):1186–
1188, September 1972.

[12] J. J. Hunt, K.-P. Vo, and W. F. Tichy. An empirical study of delta algorithms. In Proceedings of the
6th Workshop on Software Configuration Management, March 1996.

[13] J. J. Hunt, K.-P. Vo, and W. F. Tichy. Delta algorithms: An empirical analysis. ACM Transactions on
Software Engineering and Methodology, 7(2):192–214, 1998.

[14] R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W. Thatcher, editors,
Complexity of Computer Computations, pages 85–104. Plenum Press, 1972.

[15] D. G. Korn and K.-P. Vo. The VCDIFF generic differencing and compression format. Technical Report
Internet-Draft draft-vo-vcdiff-00, Internet Engineering Task Force (IETF), 1999.

[16] S. Kurtz. Reducing the space requirements of suffix trees. Software – Practice and Experience,
29(13):1149–1171, 1999.

150

[17] J. P. MacDonald, P. N. Hilfinger, and L. Semenzato. PRCS: The project revision control system. In
Proceedings System Configuration Management, 1998.

[18] E. M. McCreight. A space-economical suffix tree construction algorithm. Journal of the ACM, 23(2),
April 1978.

[19] W. Miller and E. W. Myers. A file comparison program. Software – Practice and Experience,
15(11):1025–1040, November 1985.

[20] J. C. Mogul, F. Douglis, A. Feldman, and B. Krishnamurthy. Potential benefits of delta encoding and
data compression for HTTP. In Proceedings of ACM SIGCOMM ’97, September 1997.

[21] C. Reichenberger. Delta storage for arbitrary non-text files. In Proceedings of the 3rd International
Workshop on Software Configuration Management, Trondheim, Norway, 12-14 June 1991, pages 144–
152. ACM, June 1991.

[22] M. J. Rochkind. The source code control system. IEEE Transactions on Software Engineering, SE-
1(4):364–370, December 1975.

[23] D. G. Severance and G. M. Lohman. Differential files: Their application to the maintenance of large
databases. ACM Transactions on Database Systems, 1(2):256–267, September 1976.

[24] W. F. Tichy. The string-to-string correction problem with block move. ACM Transactions on Computer
Systems, 2(4), November 1984.

[25] W. F. Tichy. RCS – A system for version control. Software – Practice and Experience, 15(7):637–654,
July 1985.

[26] A. Tridgell and P. Mackerras. The RSync algorithm. Technical Report TR-CS-96-05, The Australian
National University, 1996.

[27] P. Weiner. Linear pattern matching algorithms. In Proceedings of the 14th IEEE Symposium on
Switching and Automata Theory, pages 1–11, 1973.

151

Intra-file Security for a Distributed File System

Scott A. Banachowski, Zachary N. J. Peterson, Ethan L. Miller and Scott A. Brandt
Storage Systems Research Center

Jack Baskin School of Engineering
University of California
Santa Cruz, CA 95064

fsbanacho,zachary,elm,scottg@cs.ucsc.edu
Telephone: +1 (831) 459-2545

Fax: +1 (831) 459-4829

Abstract

Cryptographic file systems typically provide security by encrypting entire files or directo-
ries. This has the advantage of simplicity, but does not allow for fine-grained protection
of data within very large files. This is not an issue in most general-purpose systems, but
can be very important in scientific applications where some but not all of the output data
is sensitive or classified. We present a more flexible approach that uses common crypto-
graphic techniques to secure any arbitrary-sized region of data within a file, even if the
region is logically non-contiguous. This approach, called intra-file encryption, allows mix-
ing data of different sensitivity in a single file. This benefits users by permitting related
data belonging to a single file to be kept together rather than separating data of different
security needs. Supporting intra-file encryption requires additional file metadata and key
management services. For file systems that store metadata and files on the same server, the
management of extra metadata poses little problem beyond storage overhead. However,
for high-performance network-attached file systems, the additional metadata poses greater
challenges related to data placement and security. This paper describes the intra-file se-
curity encryption technique with discussion of including support for it in a distributed file
system.

1 Introduction

Traditionally, file system security uses an “all-or-nothing” approach—all of a file is en-
crypted identically. This approach is sufficient in situations where a file must be accessed
in its entirety to make sense for a user or application. However, there are many cases where
a user should only have access to some of the data in a file. A large file used for scientific
modeling might contain mostly unclassified information, with some sections of classified

153

data. Other examples include a satellite map of a region containing military zones, a speci-
fication for a vehicle with sensitive information, or a recipe with a secret ingredient. Using
current techniques, users that desire different levels of security must use different files,
complicating access for all users.

In this paper, we introduceintra-file security—a flexible approach to providing end-to-end
encryption in a file system. It allows users to encrypt extents of files independently from
other extents, so that a single file may contain one or more secure regions. A file system
incorporating intra-file security transparently handles most operations, such as automatic
decryption and key management. The result is a file system with little extra programming
or runtime overhead for the added functionality. Reads are entirely managed by the file
system and writes occur via two separate but nearly identical function calls for unencrypted
and one for encrypted data.

Flexible end-to-end encryption technology is becoming increasingly important as systems
use distributed storage architectures. High-performance computer systems deal with data
sets of tremendous size; files used in scientific computing and data-mining applications
commonly extend beyond the capabilities of single storage devices. Distributed storage
architectures provide one solution for the demands of increased storage needs. By spread-
ing file system data over multiple network nodes, distributed storage provides high data
rates through parallelism, and large, scalable storage capacity with a capability for fault
tolerance through redundancy. However, distributing storage also increases the number of
potential points for network intrusion, making data susceptible to security breaches. To
secure sensitive data, networked file servers should store and transmit only encrypted data,
which is decoded by clients with cryptographic keys. Many end-to-end encryption tools
exist, and the least cumbersome for users are those built into the file system [1]. Such file
systems transparently decode encrypted data for users with proper permission rights.

Existing cryptographic file systems secure data on a per-directory [1] or per-file [4] basis.
This level of granularity is not flexible enough to support applications that benefit from
encrypting smaller regions within files. If information is only encrypted on a per-file basis,
then a set of data containing a mix of sensitive and unclassified data must be stored in two
or more files, one for each security level. However, in some cases it is beneficial to keep
data in a single file; users and tools can manage the data as a single entity in the file system,
and the same applications may use secure and insecure data sets. Because they encrypt
whole files or file systems, existing cryptographic file system techniques cannot address
this problem.

Intra-file security offers additional security by allowing more fine-grained control file ac-
cess, breaking a file into regions of differing security without compromising single-file
semantics. This allows the system to transparently handle security operations, making the
security invisible to authorized users and thus more likely to actually be used. In order
to implement intra-file security, we introduce security-related metadata, and provide a key
management solution that allows flexibility in security and access policy.

Section 2 introduces the intra-file security (IFS) encryption algorithm. The algorithm,
based on well-known cryptographic techniques, may be implemented stand-alone or as

154

part of a larger system, such as a file system. Section 3 describes how to integrate IFS
into a distributed object-based file system. Sections 4 and 5 discuss some possible IFS
applications and related work.

2 Intra-File Security

Intra-file security (IFS) allows encryption to be applied to segments as small as a byte or as
large as an entire file; multiple encrypted segments need not be logically contiguous within
the file. In an IFS file, encrypted data is stored logically in-place, and occupies the physical
file blocks that would have contained the unencrypted data. To support efficient random
file access, we independently encrypt data from each logical file block, so there is no de-
pendence on information from other blocks. Consider the file shown in Figure 1, which
contains a non-contiguous region that must be kept secure. The region spans one entire
logical block (L1), and two partial blocks (L2 andL3). As mentioned above, this region is
not independently encryptable using standard techniques. With IFS, this non-contiguous
region of the file can be encrypted independently and made available only to appropriate
users. Furthermore, because the encrypted data is left in place, all programs written to work
with the full data set (including legacy applications) can still function properly. All regions
of the data, encrypted and unencrypted alike, will still be readable except that the encrypted
regions will not contain the secured data values but will instead contain apparently random
values.

L L L L

Secure Region

Insecure Region

0 1 2 3

Figure 1: A single logical file address space broken into secure and insecure regions.

The encryption technique may use any block or stream cryptographic algorithm. Because
the size of encrypted data in a file block may not match cipher block sizes, the algorithm is
well-suited to stream ciphers, but can also be made to work with block ciphers with little
additional effort. The flexibility of choosing any cryptographic algorithm allows system
builders to vary encryption strength, conform with specific standards, or integrate off-the-
shelf hardware chips into the system. The choice of block or stream cipher presents only a
slight variation on the technique, so we present methods for both.

2.1 Block Cipher Technique

In an IFS file, secure segments may reside anywhere within a block, and may not be phys-
ically contiguous within a block. This causes a problem for block encryption algorithms

155

that expect to receive contiguous blocks of data for encryption. Our system combines all
segments within a block into a temporary buffer before encryption, encrypts the buffer,
and then redistributes the cipher back into the positions of the original plain-text segments.
This process uses scatter-gather, minimizing actual copies to the bytes at the start and end
of a region necessary to pad out the encryption block (often 64–128 bits), and uses pointer
manipulation to do the rest of the encryption in place.

Because the output of a block algorithm is a fixed size, and the data may not necessarily
match this size, we employcipher-text stealing[2] to match encrypted data sizes to unen-
crypted sizes. Cipher-text stealing allows us to output ciphers of the same size as the input,
even if they do not match the cipher block size. The encrypted data is then redistributed
back to the file block in the area originally occupied by its plain-text counterpart. By using
initialization vectors(IVs) [13] andcipher block chaining(CBC) [13], we also obscure
data containing repeated patterns (such as headers) The IV must be unique for each block
in a storage device but need not be secret.

2.2 Stream Cipher Technique

By using a stream cipher such as RC4 or SEAL [13], IFS does not need to assemble data
into temporary buffers or use pointer manipulation to collect bytes for encryption; instead,
data may be encrypted in place. Stream ciphers such as RC4 claim a speed improvement
of 10 times over DES, further improving performance. Applying feedback chaining to the
stream hides data patterns—we use an IV to initialize the feedback chain, therefore the
metadata structure does not differ from block mode encryption.

2.3 Encryption Metadata

By default, all data in the file is assumed to be unencrypted. In order to locate the secure
data within the file, and to find the encryption parameters, each encrypted block requires
a description of the location of secure segments and initialization vector information. In
IFS, the structure holding this data is a security node, ors-node, shown in Figure 2. The
size of an s-node depends on the number and layout of secure regions. A secure region is
defined by an extent consisting of a start and a length; the start is relative to the start of the
previous secure region, or the start of the block for the first region. Because many secure
regions are formed of repeating patterns of data of varying levels of security, there is also a
shorthand way of representing simple patterns of secure regions that are a fixed length and
fixed distance apart. This is accomplished by specifying a repetition count associated with
the offset and length specified in the secure region specification.

In addition to information about the location of secure regions, s-nodes must store the in-
formation necessary to encrypt and decrypt the secured data. This includes key information
for the region as well as an initialization vector (IV)—a number used to seed the encryption
algorithm when it operates on the encrypted data in the block. An IV is necessary to ensure
that encrypted regions with the same data do not result in the same ciphertext, providing

156

Unencrypted

Encrypted: access by group A

Encrypted: access by group B

Start Length Count s-group

512 256 1 A
256 256 1 B
512 256 1 A
256 256 1 B
768 128 1 A
256 128 3 A

Figure 2: A 4 KB block encrypted with intra-file security and its associated security node
(s-node). Note that the last entry in the s-node has a repeat count of 3, representing the
three repeated secure regions near the end of the file. The first of the four regions must be
represented separately because its distance from the previous region is larger than that of
the following three regions.

insight about the file’s structure or contents that might prove useful to an intruder. The IV
must differ for each file block, and thus is a function of the logical block number as well
as per-file values such as file identifier. If the IV for a block can be determinedsolelyfrom
the logical block number and per-file constants, it need not be stored in the s-node because
it can be calculated at runtime.

Pointers to keys, on the other hand, must always be stored in the s-nodes. It might be possi-
ble to avoid storing key information in the s-node by simply referring to key information for
the whole file; however, this approach would not permit encrypting portions of a file with
different keys. Instead, we store ans-groupidentifier for each secure region; this identifier
is translated by the system into a key using the approach discussed in Section 3.1.

There is one s-node structure for each logical file block that contains any encrypted seg-
ments. Note, however, that it is possible to group file system blocks together to reduce the
amount of storage required by s-nodes; this technique is particularly effective for files that
require large numbers of identically-sized regions with constant spacing. In such files, a
few secure region descriptors can suffice for a large number of secure regions, reducing
the file system overhead for IFS. Because s-nodes are allocated by the file system from the
same pool of blocks used for regular files, reducing the size of security information allows
more data to be stored in the file system.

157

It should be noted that while they are adequate for their intended purpose, the s-node struc-
ture described in this section could be improved in several ways. The s-node as depicted
in Figure 2 is simple to implement, but uses space inefficiently. Instead, s-nodes could
be compressed using gamma compression [14] or other techniques for compressing small
numbers. Additionally, an IFS system could attempt to recognize and represent more com-
plex encryption patterns, albeit at the cost of added complexity.

3 Integration with an OBSD File System

Although IFS may be used in any type of file system, we present a design to implement
intra-file security for a file system based on Object Based Storage Devices (OBSDs). We
are proposing the use of OBSDs for high-performance network-attached storage devices;
this approach has similarities to Network-Attached Secure Disks (NASD) [3]. An OBSD-
based file system is designed for high-performance computing workloads—precisely the
kinds of applications that benefit from intra-file security. Because OBSDs require strong
security in order to keep data safe in storage and transit [7], we expand the end-to-end
encryption capabilities by incorporating IFS.

OBSD-based storage systems have the potential to improve both file system performance
and functionality by building a high-performance storage system from inexpensive storage
components connected by high-speed networks. The main hardware component of the stor-
age system is an object-based storage device—one or more disks (or other storage devices)
managed by a single CPU and seen by the file system as a single device. Data is distributed
across many OBSDs, with high bandwidth coming from large numbers of concurrently
operating OBSDs.

Each OBSD is responsible for managing and allocating its own storage; requests to an
OBSD are of the form “write (or read) this range of bytes from file X,” with low-level
placement of the data and free space management left to the OBSD. High-level information
such as the striping pattern across OBSDs and translation of names to file identifiers are
left to a metadata server (MS), which is accessed by the user only when a file is opened or
closed. This file system design is shown in Figure 3.

The key advantage of OBSDs in a high-performance environment is the ability to delegate
low-level block allocation and synchronization for a given segment of data to the device
on which it is stored, leaving the file system to decide only on which OBSD a particular
segment should be placed. In such a distributed file system, s-nodes are stored physically
near the blocks they describe, avoiding extra traffic to central servers on distributed storage
systems and amortizing I/O usage among the devices. OBSDs use their own allocation poli-
cies to manage local data, including file and s-node data, placing them for efficiency within
physical storage devices. Because s-nodes do not contain secrets, end-to-end encryption
is provided to users without any extra involvement of the OBSD—the OBSD sends all file
data and s-nodes in the clear on insecure networks. The security of encrypted data lies with
the key management policy.

158

OBSD OBSD

OBSD OBSD OBSD

Metadata
Server
Cluster

Client Systems

Storage Server
Components

High performance backbone
with 10-100 GB/sec aggregate
bandwidth

Multiple
Access Paths
to Redundant
Backbone.

Several Thousand OBSDs

Wide Area
Clients

Tera-scale
Computers

Visualization
Systems

Figure 3: OBSD storage system architecture.

3.1 Authentication and Key Management

An authentication system is required for file system security, regardless of end-to-end en-
cryption capabilities. Since we are focusing on support for intra-file encryption, a full
development of the authentication system is beyond the scope of this paper. However, we
rely on an authentication system for distribution of encryption keys, so we briefly describe
how such a system may be implemented.

A major role of a metadata server (MS) is to control access to the file system. When
users wish to open a file, the MS checks file permissions before granting access. As a
first step, client software authenticates a user’s identity, using standard authentication tech-
niques such as Kerberos [9] or cryptographic hashes [7, 10]. The MS proceeds to check
permission for a requested file operation using the file system’s access control mechanism.
However, OBSDs handle read and write requests directly; in order to enforce access rights,
OBSDs must also check identities and permissions as well. The overhead of maintaining
and checking access permissions at each OBSD defeats the high-performance requirement,
so an OBSD uses a more efficient method to check the validity of a client’s request. The
MS generatestokenscontaining encoded access rights during open requests, and sends
them to clients along with the file’s metadata. Clients present these tokens with their re-
quests to OBSDs. By checking the permissions encoded in the token, an OBSD determines
the validity of the request. Tokens are equivalent tocapabilitiesused in NASD for the same
purpose [4, 3]. In IFS, security information is included in the forwarded tokens.

159

Access to encrypted segments is based on IFS group permissions, which we calls-groups.
An s-group contains a list of users and/or groups that may use the key for an encrypted
segment; the creator of an encrypted segment specifies s-group members during the initial
write. A key server (KS) manages s-groups separately from file-access group permissions
normally associated with file services; the goal is to remove management of encryption
from traditional file system administration. The KS is responsible for checking s-group
permissions, and generating and storing keys. From a user’s viewpoint, calls to the MS
involve both the MS and the KS, whether they reside on single or concurrent machines.

3.2 File I/O Interface

IFS uses standard POSIX file semantics by instrumenting interface libraries to handle secu-
rity operations transparently. However, supporting encryption requires some new functions
that allow writing of encrypted segments. Applications writingonly unencrypted data and
readinganydata use the normal write and read function interfaces.

Reading encrypted data is transparent to the user. When reading data, users with a key
see decrypted data when they read data; thus, applications reading data stored with IFS do
not need any modifications, though they must be capable of dealing with garbage data in
the data file—reads from encrypted segments of a file appear as random bits if the user
lacks the proper key. If the user has the necessary key, the file system client transparently
decrypts the file using keys supplied with authentication tokens. Only users with the proper
key may decrypt secure segments and view the contents; the encoding of the token tells the
OBSD whether or not to send s-nodes with data, so extra traffic is avoided when possible.

Under IFS, the interface to the file system is extended to support encrypted writes. En-
crypted segments remain read-only unless the user hasencrypted write access, which is
granted through IFS s-group permissions. Even for users with permission, encrypted writes
are explicit. Two new system calls support encrypted writes. One function translates an s-
group specification into an integer identifier. The identifier is used in subsequent calls to
thesecure write function, which is identical to the standard ‘C’write function ex-
cept for this additional argument. When writing encrypted segments, the file system client
creates s-nodes for the corresponding blocks, and sends the s-nodes to the OBSD along
with the blocks. When over-writing data in blocks already allocated to the file, the client
must fetch and update the existing s-node (read-modify-write operation).

Unencrypted write requests to file blocks containing encryption must be carefully con-
trolled, because users without encryption rights cannot overwrite the encrypted region of
the block. To protect the integrity of encrypted data, it is impossible for users to write to en-
crypted segments using the traditional write function call. In order to minimize the latency
of unencrypted writes, the OBSD quickly caches all data on writes, and during periods
of inactivity discards changes to encrypted segments before committing the write. Essen-
tially, this makes all encrypted segments read-only unless invoking thesecure write
function. This policy does not impact blocks without encrypted segments, but it effects the
coherency of blocks that do—until the write is fully committed, multiple copies of a block

160

reside in the file system. As a trade-off between performance and safety, we prefer that
writes to encrypted segments do not occur unless made explicit, even for users with a key.

4 IFS Applications

To support encryption of data within existing unencrypted files that have been migrated
to an IFS file system or written with non-IFS legacy applications, an IFS-capable copy
program can be provided to encrypt the appropriate portions of the file. This program
would take as input an unencrypted file and a specification of the regions to be encrypted.

Databases that use a single large flat-file could easily benefit from IFS by encrypting those
fields of the database that must be kept secret, while still maintaining single-file semantics
for the whole database. Most databases support encrypted fields by simply supplying keys
for particular fields; however, this approach requires a reasonable amount of support from
the database system or the database queries to remain transparent to users. By using IFS,
this process could be made transparent, particularly if databases exchanged information
with the file system.

Many very large files used in military and government scientific work will also benefit from
IFS. Removing the need to fragment files that naturally require multiple levels of security
will simplify applications as well as data management; no longer will users need to create
several files with different encryption levels and keep track of which ones are related and
how. Eliminating fragmentation ensures high-performance sequential and random access.
Importantly, legacy applications can transparently be made IFS-capable, since the data
formats and locations within the files remain unchanged even as portions of the data itself
are encrypted.

IFS may also be used to transfer partial files in a distributed file system, as suggested by
Muthitacharoenet al. [8]. By integrating IFS into a low-bandwidth distributed file system,
users could gain secure access to their files even from slow clients.

5 Related Work

There have been many file systems and storage systems that provide higher security by
encrypting files and metadata. Reidel,et al. [11] provide a good framework for evaluating
secure file systems; their work discusses file systems and the security that each provides.
Intra-file security is not one of their criteria; although they do discuss the granularity of key
protection, the minimum protection unit is a single file.

Some file systems, such as CFS [1] and Cryptfs [15], require users to manage their own
keys. This approach is simple, but is not suitable for IFS because of the sheer number
of keys required [12]. Other systems such as SNAD [7], SFS and SUNDR [6, 5], and
NASD [3] automatically manage encryption keys, though they do not permit partial-file
encryption. Moreover, many of these systems, including NASD and SFS, store data on

161

the disk in an unencrypted form, using encryption only for authentication. The techniques
described in this paper are based on those used in SNAD—it provides strong protection by
encrypting data end-to-end, leaving it in the clear only on the client.

Intra-file security is particularly important for large, distributed file systems such as those
enabled by NASD [3] and object-based storage devices (OBSDs). Reed,et al. provide a
method for strong authentication in such an environment in SCARED [10], providing an
excellent platform for both standard security [7] and the intra-file security proposed in this
paper.

6 Conclusions

Secure file systems and distributed storage networks currently permit encryption only on
a per-file or per-directory basis. However, there are many applications that would benefit
from the ability to encrypt data in smaller pieces, using different keys to permit parts of a
file to be read and written by different groups of users.

This paper presents a solution to this problem, by introducing a concept called intra-file se-
curity, and provides a high-level design for implementing it in a distributed file system and
on individual servers within such a file system. Intra-file security uses additional metadata
to maintain information about secure segments, allowing blocks of a file to be encrypted
and decrypted individually on the client. A key management system provides group man-
agement facilities that are well adapted to the hierarchical nature of access to classified
materials present in organizations requiring security.

Acknowledgments

We thank Randal Burns for his feedback and advice, and Ahmed Amer for proof-reading.
We also thank our shepherd, Jack Cole, for his helpful suggestions and patience.

References

[1] M. Blaze. A cryptographic file system for Unix. InProceedings of the First ACM
Conference on Computer and Communication Security, pages 9–15, Nov. 1993.

[2] J. Daeman.Cipher and Hash Function Design. PhD thesis, Katholieke Universiteit
Leuven, Mar. 1995.

[3] G. A. Gibson, D. F. Nagle, K. Amiri, J. Butler, F. W. Chang, H. Gobioff, C. Hardin,
E. Riedel, D. Rochberg, and J. Zelenka. A cost-effective, high-bandwidth storage
architecture. InProceedings of the 8th Interational Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS), pages 92–103,
San Jose, CA, Oct. 1998.

162

[4] H. Gobioff, G. Gibson, and D. Tygar. Security for network attached storage devices.
Technical Report TR CMU-CS-97-185, Carniege Mellon, Oct. 1997.

[5] D. Mazières, M. Kaminsky, M. F. Kaashoek, and E. Witchel. Separating key man-
agement from file system security. InProceedings of the 17th ACM Symposium on
Operating Systems Principles (SOSP ’99), pages 124–139, Dec. 1999.

[6] D. Mazières and D. Shasha. Don’t trust your file server. InProceedings of the 8th
IEEE Workshop on Hot Topics in Operating Systems (HotOS-VIII), pages 99–104,
Schloss Elmau, Germany, May 2001.

[7] E. L. Miller, D. D. E. Long, W. E. Freeman, and B. C. Reed. Strong security for
network-attached storage. InProceedings of the FAST 2002 Conference on File and
Storage Technologies, Monterey, CA, Jan. 2002.

[8] A. Muthitacharoen, B. Chen, and D. Mazi`eres. A low-bandwidth network file system.
In Proceedings of the 18th ACM Symposium on Operating Systems Principles (SOSP
’01), Oct. 2001.

[9] B. C. Neumann, J. G. Steiner, and J. I. Schiller. Kerberos: An authentication service
for open network systems. InProceedings of the Winter 1988 USENIX Technical
Conference, pages 191–201, Dallas, TX, 1988.

[10] B. Reed, E. Chron, R. Burns, and D. D. E. Long. Authenticating network attached
storage.IEEE Micro, 20(1):49–57, Jan. 2000.

[11] E. Reidel, M. Kallahalla, and R. Swaminathan. A framework for evaluating storage
system security. InProceedings of the FAST 2002 Conference on File and Storage
Technologies, Monterey, CA, Jan. 2002.

[12] P. Reiher, T. Page, G. Popek, J. Cook, and S. Crocker. Truffles—secure file sharing
with minimal system administrator intervention. InProcedings of the 1993 World
Conference on System Administration, Networking, and Security, Apr. 1993.

[13] B. Schneier.Applied Cryptography. Wiley, New York, NY, 2nd edition, 1996.

[14] I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes. Morgan Kaufmann
Publishers, 1999.

[15] E. Zadok, I. Badulescu, and A. Shender. Cryptfs: A stackable vnode level encryption
file system. Technical Report CUCS-021-98, Columbia University, 1998.

163

 165

Efficient Storage and Management of Environmental Information
Nabil R. Adam, Vijayalakshmi Atluri, and Songmei Yu

MSIS Department and CIMIC, Rutgers University
Newark, New Jersey 07102

{adam, atluri, songmei}@cimic.rutgers.edu

Yelena Yesha
Department of Computer Science and Electrical Engineering, UMBC

Baltimore, MD 21250
yeyesha@cs.umbc.edu

Abstract
Spatial Data warehouses pose many challenging requirements with respect to the design of the
data model due to the nature of analytical operations and the nature of the views to be
maintained by the spatial warehouse. The first challenge is due to the multi-dimensional nature of
each dimension itself. In a traditional data warehouse the various dimensions contributing to the
warehouse data are simple in nature, each having different attributes. Data models such as the
star schema, fact constellation schema, snowflake schema or the multi-dimensional model, can
therefore, be used to represent the traditional data warehouse. On the other hand, the different
dimensions in a spatial data warehouse comprise of different types of data, each of which is
multi-dimensional in nature. The current available data models are not adequate for such
domains. In this paper, we propose a data model that is well suited for such domains, called the
cascaded star model that is capable of representing multiple dimensions of a spatial data
warehouse, where each dimension is multi-dimensional. The nature of the queries in such
domains is different from that of traditional data warehouses (such as fly-by of a region), and
therefore we propose a suitable architecture that allows specification of the queries and their
visual presentation.

1. Introduction
In the area of Environmental and Earth sciences, we are concerned with collection, assimilation,
cataloging and dissemination or retrieval of a vast array of environmental data. Environmental
and Earth science computer systems receive their input from various types of satellite images
with different resolutions captured by different sensors, models of the topography and spatial
attributes of the landscape such as roads, rivers, parcels, schools, zip code areas, city streets
and administrative boundaries (all exist in topographic maps), census information that describes
the socio-economic and health characteristics of the population, processed digital terrain models
into a new information product in the form of three-dimensional visualizations of digital terrain
models projected as video ``fly-bys'', and finally information transmitted (almost in real-time)
from ground monitoring stations.

The system needs to provide flexible image extraction functionalities, such as hyper-spectral
channel extraction, overlaying, and ad-hoc thematic coloring [4]. Such systems are intended to
serve the evaluation and formulation of environmental policies by enabling users, including
management and researchers to query various critical parameters such as ambient air and water
quality and visualize the results in a graphical form. In addition to serving decision makers and

 166

researchers, these systems are intended to also serve the citizens, thus, enabling any citizen of
any given district or a state to look at his/her county, community, home and be able to obtain
relevant information on such issues as environment, health, and infrastructure, among others.
Such systems should facilitate effective knowledge discovery in a manner tailored to changing
needs and abilities of users, both intellectual and technological.

Consider for example the NASA Regional Application Center (RAC) at Rutgers Center for
Information Management, Integration and Connectivity (CIMIC), which is a joint project
between Rutgers CIMIC, NASA Goddard Space Flight Center (GSFC) and the New Jersey
Meadowlands Commission (NJMC). As a RAC, CIMIC maintains a large collection of satellite
images acquired through various sources. Specifically, the CIMIC-RAC currently stores and
manages satellite imagery from various sources, including:

?? Direct downloads of AVHRR data from polar orbiting satellites, such as NOAA
12, NOAA 14 and NOAA 15, over the Northeast region of the US including New
York and New Jersey;

?? LANDSAT and RADAR data obtained from NASA archives;
?? Hyper-spectral images from the Airborne Imaging Spectrometer for Applications

(AISA) sensor;
?? Value-added products, such as AVHRR NDVI biweekly composites from the

NASA EROS data center; Aerial ortho-photographs provided by various private
companies; and

?? Value-added products generated by various experts.

In addition to the images from a variety of space borne satellites, other data includes ground
data from continuous monitoring weather stations, and maps, reports, data sets from federal,
state and local government agencies. The problem is how to efficiently manage and store this
diverse type of information and how to effectively serve the diverse set of end users. In
traditional domains such as banking, insurance, and retail industries data warehousing has been
successfully implemented to address this problem (inmon96). In such industries, the problem of
how to design and implement data warehousing has been well researched over the years and is
well understood. In nontraditional domains such as the Environmental and Earth sciences, the
problem of applying data warehousing technology is complex and needs further study.

2. Challenges
Environmental data warehouse is an example of a spatial data warehouse. “Spatial Data
Warehouse is defined as an integrated, subject-oriented, time-variant, and nonvolatile spatial
data repository for data analysis and decision making [8].” A data warehouse may use one of
the data models such as the star schema, fact constellation schema, snowflake schema or the
multi-dimensional model. For example, in a star schema, the data warehouse contains a central
table called the fact table, comprising of the keys of each dimension, and a table for each
dimension. In a spatial data warehouse, the dimensions may include both spatial and non-spatial.
Spatial Data warehouses pose many challenging requirements with respect to the design of the
data model due to the nature of analytical operations and the nature of the views to be
maintained by the spatial warehouse.

 167

The first challenge is due to the multi-dimensional nature of each dimension itself. In a traditional
data warehouse the various dimensions contributing to the warehouse data are simple in nature,
each having different attributes. On the other hand, the different dimensions in a spatial data
warehouse comprise of different types of data, each of which is multi-dimensional. The various
raster images such as satellite downloads, images generated from these satellite images
describing various parameters including land-use, water, temperature have multiple dimensions
including the geographic extent and coordinates of the image, the time and date of its capture,
and resolution. Other such examples include aerial photographs. The regional maps represented
as vector data also have a temporal dimension as they change over time. The streaming data
collected from various sensors placed at different geographic locations that sense temperature,
air quality, atmospheric pressure, water quality, dissolved oxygen, mineral contents, salinity,
again have both spatial and temporal dimensions. Other dimensions include demographic data,
census data, traffic patterns, and many such as these.

The second challenge is due to the nature of the queries posed to the scientific warehouses. As
the queries typically involve accessing multiple dimensions, each of which in itself is multi-
dimensional. We illustrate this with the following examples:

Example 1: A user may want to look at the changes in the vegetation pattern over a certain
region during the past 10 years, and see their effect on the regional maps over that time period.
This involves layering the images representing the vegetation patterns with those of the maps
whose time intervals of validity overlap, and then traverse along this temporal dimension with the
overlaid image. In the traditional data warehouse sense, this amount to first constructing two
data cubes along the time dimensions for each of the vegetation images and maps, and then
fusing these two cubes into one. One may envision fusing of multiple cubes. For example, if the
user also wants to observe the changes in the surface water, population, etc., due the changes in
the vegetation pattern over the years, fusion of such multiple cubes is needed.

Example 2: Another user may want to simulate a fly-by over a certain region staring with a
specific point and elevation, and traverse the region on a specific path with reducing elevation
levels at a certain speed, and reaching a destination, effectively traversing a 3-dimensional
trajectory. This query involves retrieving images that span adjacent regions that overlap the
spatial trajectory, but with increasing resolution levels to simulate the effect of reduced elevation
level. Another important aspect of serving such queries additionally requires controlling the
speed at which they are displayed to match the desired velocity of the fly-by.

3. Spatial Database System Architecture
The ingestion, processing and storing of satellite images in CIMIC is done as shown in Figure 1.
Images are downloaded from NOAA satellites with the Quorum HRPT antenna and receiver
systems. Once a day the new raw image files are moved to oversized hard drives on a UNIX
HP platform. At the same time, a new elements.dat file with ephemeris data is captured through
the web and placed in the PC running the QTrack ingest software, which assures that images
ingested later on will have updated orbital elements information and require less navigational
correction.

 168

Raw Files

NOAA 12, 14, 15

NASA Rapid
Application Tool

Creation of level1b
Georectification
Georegistration

ORACLE DB

metadata thumbnails Region Of Interest

Metadata
Extraction

Data band
Extraction

Direct Readout
AVHRR

elements.dat
Downloaded daily
from US Navy

Figure 1: Preprocessing and Ingesting of Satellite Images

On the HP platform, raw files are fist classified by size. Files less than 20mb are automatically
eliminated, and the remaining raw files are converted to level-1b by a quick-ingest routine, and
then compressed. Level-1b files then go through the remap routine where images are clipped to
a specific area of interest (New Jersey and surroundings) and projected to the Mercator
projection. The resulting remap files are saved in an internal format (RAT format) and as bitmap
files. These bitmap files are then classified using normalized regression routine, which employs a
tool developed by NEC. Specifically, images with high regression coefficient (0.80 or greater)
are classified as cloud free for the region of interest and flagged as so in the database. The RAT
format files that emerge from the remap tool are used to create NDVI’s. These NDVI’s
populate the database and become available to users through the web, and bi-weekly collection
of NDVI’s are made into a single NDVI images composite and are also available through the
web. Due to the limited use of DBMS extenders for handling spatial data, we have
implemented the database in two separate modules: One the relational DBMS to store metadata
and thumbnail of images, and another a spatial data/flat file for images. Image files are tied with
the DBMS by linking the image-id in the database with individual image files. The metadata of
the images is maintained by an Oracle database through which image thumbnail images can be
obtained. These images are indexed using an SS-Tree for enhancing the response time for the
queries and insertions.
Interfaces are provided to querying the database based on time of capture, particular satellite or
sensor instrument, type of image such as raw, composites, NDVI, water, temperature, etc.
Essentially, users are provided with the image-ids, and the actual image is retrieved by clicking
on the relevant image-id. Currently, it does not provide powerful capabilities to let users

 169

perform complex queries for advanced data analysis, such as trend or pattern analysis. In
addition, no visual display tools are available to allow users to view image pattern changes over
certain period of the range queries displayed with a speed specified by the users, nor
capabilities to handle queries that simulate a fly-by over certain region as described in Examples
1 and 2.

Currently it uses ArcIMS from ESRI to process the image files (in .shp format), including
layering the images, populating the metadata associated with the images, coloring, and
composing fly-bys. These are then published on the web so that users can view them, zoom-
in/out, move in different directions (north, south, east, west), or get associated metadata by
clicking on a specific place. However, this is accomplished manually only for a pre-specified set
of queries. Our goal is to accommodate ad-hoc queries by employing a data warehouse. As a
result, for example, the above-mentioned fly-bys can be automatically generated upon users’
request.

4. The Spatial Data Warehouse System Architecture
Our system comprises of a friendly geographic user interface, a powerful query processing
engine that is capable of supporting various OLAP operations, an output rendering engine, and
an spatial data warehouse, as shown in figure 2. Our data warehouse is based on the cascaded
star model, described in section 6.

Figure 2: System Architecture

The data from different repositories, such as metadata databases, image database, databases of
real-time streaming data from environmental sensors, etc., are first extracted, validated,
transformed and then finally integrated, before loading into the warehouse. The data in the
warehouse is periodically refreshed to reflect updates at the sources and purged from the
warehouse, perhaps onto slower archival storage [10].

In general, the reason one builds a data warehouse is to construct data in a structured way and
to allow pre-processing so that users can turn the data into useful knowledge quickly.
Operational databases maintain state information, while data warehouses typically maintain
historical information, and as a result, data warehouses tend to be very large and grow over

Data integrator

Query
Processing

Engine

Environmental
Data Warehouse

Output
Rendering

Engine

External
Databases and
Repositories

Image Metadata

Web Based Us er Interface

 170

time. Hence, the size of the data warehouse and the complexity of queries can cause queries
process to take very long to complete, which is unacceptable in most decision support system
environments. Also, a major performance challenge for implementing query processing and
output representation is how we construct data warehouse in an efficient way.

4.1 Constructing an Efficient Data Warehouse
There are many ways to achieve data warehouse performance goals. Query optimizations and
query evaluation technique can be enhanced to handle aggregations better, or using different
indexing strategies like bit-mapped indexes and join indexes, etc. We consider implementing our
GIS warehouse in the following two specific aspects to facilitate construction of the efficient
data warehouse.

One commonly used technique is to selectively materialize/pre-compute frequently used queries.
If we can do this pre-computation effectively and efficiently, then we can store many frequently
accessed historical results in the data warehouse combined with different time periods, different
resolutions, different aggregations, and different views, etc, at users’ interests. In this way, the
output processing can be achieved very fast, and sometimes automatically without any more
computation efforts.

Firstly, let us look at the pre-computation for non-spatial data that are stored in RDBMS and
are associated with spatial data. Picking the right set of queries to materialize is a nontrivial task.
For example, we may want to materialize a query that is relatively infrequently used if it helps us
answer many other queries quickly. We adopt the linear cost model from [8], where the data
are stored in multi-dimensional data cubes, and each cell of the data cube is a view consisting of
an aggregation of interest. The values of many of these cells are dependent on the values of
other cells in the data cube. One common and powerful query optimization technique is to
materialize some or all of these cells rather than compute them from raw data each time. A
lattice framework is used to express dependencies among different cells in the total or partial
order, and a greedy algorithm that works off this lattice determines a good set of cells to
materialize [9]. We all know that dimensions of a data cube consist of more than one attribute,
and the dimensions are organized as hierarchies of these attributes. For a simple example, the
time dimension can be organized into the hierarchy: day, week, month, and year as follows:

 Day

 Week Month

 Year

None

Figure 3: Sample Time Hierarchy

In the presence of above hierarchy, the dependency relationship is obviously seen. Consider a
query that groups on the time dimension only, and we can have the following three queries
possible: (day), (month), (year), each of which groups at a different granularity of the time
dimension, also if we have total available for by month, we can use the results to compute the

 171

total grouped by year. Generally we selectively materialize the data cube based on query
dependencies introduced by the conception of hierarchies.

Secondly, it is also essential to pre-process spatial data efficiently, which are more complicated
than computing non-spatial data. For example, we may pre-process digital maps at different
resolution levels and store them in the data warehouse, and users can combine them randomly
to stimulate a fly-by, or pre-overlay the images representing the vegetation patterns with those
of the maps having the same time intervals of validity, or pre-group a multi-color coded map to
emphasize a particular category, or pre-interpolate spatial data over a large area which refers to
the process of deriving elevation data for points where no data samples have been taken, etc.
There is a big challenge for our project since our pre-processing is based on users’ most
frequent access interests that have to be updated frequently to meet changes.

Another challenge is that the above partial or total order relationship may not be suitable for
spatial data dependency. For example, there is no dependency relationship among resolutions,
and we can’t compute high-level resolution based on low-level resolution or vice versa, or we
can’t overlay two images based on another overlaid image. Finding a dependency relationship
among spatial data to avoid processing every raw image from scratch is our next step.

Another technique is to construct our data warehouse model in a different way that is an
extension of the star schema, in which each dimension itself has a star schema of its own. We
will explore this in detail in the following section.

4.2 The User Interface, Query Processing and Output Rendering Engines
A web based high-level user interface to a GIS must provide users with the necessary tools to
store, retrieve, and analyze data so that they can perform their application-specific functions.
More importantly, it is used to perform complex data analysis from the data warehouse without
writing programs and should be comprehensive enough to let users get detailed analysis results
and knowledge.

Moreover, after the translated SQL queries are processed in the data warehouse, an output will
present multi-dimensional views of data to various front-end tools through different output
processing engines. For example, OLAP servers can execute all OLAP operations, such as
roll-up, drill-down, dicing and slicing, and generate results for data analysis and reporting,
decision making strategies and advanced data mining. At the same time, users could require the
data representation as the generation of a fly-by video with a trajectory, elevation and velocity.

When a spatial database is to be used interactively, graphical presentation of spatial data types
(SDT) values in query results is essential. It is also important to enter SDT values to be used as
“constants” in queries via a graphical input interface. The goal of querying is in general to obtain
a “tailored” picture of the space represented in the database, which means that the information
to be retrieved is often not the result of a single query but rather a combination of several
queries. For example, in GIS application, the user may want to see a map built by graphically
overlaying the results of several queries. Therefore, a user interface for output presentation
should have at least two sub-windows: (1) a text window for displaying the textual

 172

representation of a collection of objects, containing the metadata or alphanumeric attributes of
each spatial object, (2) a graphical window containing the overlay of the graphical
representations of spatial data of several object classes or query results, which could be a
generation of a fly-by video. We will consider implementing our system in this way in the near
future.

The query engine translates the user inputs as SQL queries that will be inserted into data
warehouses for further processing. The output representation engine is dealing with data
representation using existing software such as PIT and IDRISI or newly developed applications.
This part is mainly complicated by users’ requirements because there are a lot of decision-
support queries that are much more complex than OLTP queries and make heavy use of
aggregation, and this is basically OLAP operations. Besides this, most users need some specific
visualization results such as fly-by over a certain region staring with a specific point and
elevation, and traverse the region on a specific path with reducing elevation levels at a certain
speed, and reaching a destination, effectively traversing a 3-dimensional trajectory, or a fly-by
over a certain time period for vegetation pattern change within New Jersey area, which is a
process of image manipulation and representation.

5. Traditional Data Warehouse Models
A number of data models have been proposed to conceptually model the multi-dimensional data
maintained in the warehouse. These include the star schema, the snowflake schema, and the fact
constellation schema. Since our data model, the cascaded star model, is an extension of the star
model, in the following, we present these three models with examples, and bring out the
limitations of these models in representing the data in our spatial data warehouse.

5.1 The Star Schema
Perhaps, star schema, first introduced by Ralph Kimball, is the earliest schema used to model
the data warehouse implemented as a relational databases. In this schema, the data warehouse
contains a large central table (fact table) containing the bulk of data (dimensions) with no
redundancy, and a set of smaller attendant tables (dimension tables) with one for each
dimension. The schema graph resembles a starburst, with the dimension tables displayed in a
radial pattern around the central fact table, as shown in Figure 4, where A is the fact table, and
b, c, d, e and f are dimensions and represented by dimensional tables.

 b c

 A
 d e
 f

 Figure 4: The Star Model
Note that in the star schema, only one dimension table represents each dimension, and each
dimension table contains a set of attributes and joins with fact table by common keys when
implemented as a relational database. Moreover, the attributes within a dimension table may
form either a hierarchy (total order) or a lattice (partial order). Currently, most traditional data

 173

warehouses use a star schema to represent the multi-dimensional data model as it provides
strong support for OLAP operations.

To illustrate, in the following, we provide an example of the implementation in star schema [8].
Suppose the multi-dimensional data for the weather in northeast region in USA consists of four
dimensions: temperature, precipitation, time, and region_name, and three measures:
region_map, area, and count, where region_map is a spatial measure which represents a
collection of spatial pointers pointing to corresponding regions, area is a numerical measure
which represents the sum of the total areas of the corresponding spatial objects, and count is a
numerical measure which represents the total number of base regions accumulated in the
corresponding cell.

The following figure illustrates the implementation for a star model in this case:

Figure 5: A sample star model

The following tables show some sample data set that maybe collected from a number of
weather districts tested in northeast of USA.

Region_name Time Temperature Precipitatio
n

…

A111 02/23/01 33 1.4 …

B111 02/24/01 41 1.5 …

… … … … …

Region_name District City Region State

A111 A Flushing 111 NY

B111 B Edison 111 NJ

… … … … …

Time Day Month Year Season

02/23/01 23 February 2001 Winter

02/24/01 24 February 2001 Winter

… … … … …

Temperature Range Description

 33 11 Chilly

41 12 Mild cold

… … …

Region_name
Time

Temperature
Precipitation

Region_map

Area
Count

Region_name
District

City
Region
State

Time
Day

Month
Year

Season

Temperature
Range

Description

Precipitation
Range

Description

 174

Precipitation Range Description

1.4 21 Middle

1.5 22 Middle

… … …

From this sample, we can see that a star model consists of a fact table with multiple dimension
tables, and the fact table joins the dimension tables with different keys. In this example, all
attributes in each dimension table are only one-dimensional and can be expressed completely in
one table. Our question is: if some or all of the attributes in the dimension tables are also multi-
dimensional, i.e., one attribute in one dimension table has multiple attributes associated with it,
how can we implement it in this model? The answer is impossible.

5.2 The Snowflake Schema
Snowflake schemas provide a refinement of star schemas where the dimensional hierarchy is
explicitly represented by normalizing the dimension tables, and therefore further splitting the data
into additional tables (see Figure 6). Such a table is easy to maintain and saves storage space
because a large dimension table can become enormous when the dimensional structure is
included as columns.

 c
 b A d

 e

 Figure 6: The Snowflake Model

However, only some dimensional tables are normalized and this normalization reduces the
effectiveness of browsing since more joins will be needed to execute a query. When applied to
spatial attributes for each dimension table in our case, it is obviously not well suited.

5.3 The Fact Constellation Schema
Sophisticated applications may require multiple fact tables to share dimension tables. The
dimensions of this expanded star schema can be normalized into a snowflake schema. These
multiple fact tables can separate the detail and the aggregated values instead of maintaining a
single and huge fact table, which may speed the queries processing. See Figure 7 for this
schema, where fact table A and B share the dimensions h and i.

 h
 b e

 A B
 c f
 d g
 i

 Figure 7: The Fact Constellation Model

 175

However, there are some disadvantages of using the fact constellation schema. For example, for
data warehouse with high cardinality, i.e. high number of hierarchy, numerous fact tables must
be created, which increase the complexity of the design. Furthermore, for spatial oriented
attributes for each dimension table, only one dimension table is not enough for holding the
properties of each attribute.

6. The Cascaded Star Model
In this section, we present an outline of our spatial data warehouse model, called the cascaded
star schema, which is an extension of the star schema, where each dimension itself has a star
schema of its own. There are a number of research studies in the area of spatial data
warehouses (see the reference list). The work proposed by Han et al. is closely related to our
work. Han et al. [8,9] study the problems associated with the design and construction of spatial
data cubes. It distinguishes the various dimensions in the spatial data warehouse as non-spatial,
spatial-to-non-spatial, spatial-to-spatial, based on how they transform when that dimension is
generalized. They provide how the various operations such as roll-up, drill-down, slicing and
dicing, and pivot can be carried out. While we recognize that each spatial dimension in a data
warehouse in itself is multi-dimensional and argue that the data warehouse model need to be
enhanced to handle this. The cascades star schema is shown in Figure 8, where A is the fact
table, and b, c, d, e and f are dimensions that are also multi-dimensional.

 Figure 8: The Cascaded Star Model

The multi-dimensional nature of each dimension is illustrated with an example in figure 9. In here,
the fact table comprises of the various dimensions of the spatial data, which include land-use,
temperature, water and vector maps. As can be seen, each of these dimensions in turn is multi-
dimensional, represented as a star. To illustrate, the land-use dimension comprises of a fact
table of its own with dimensions time, spatial and attributes, where the time dimension is
comprised of attributes year, date and time of capture of the image; the spatial dimension is
comprised of the x, y coordinates of the lower left hand and corner and the upper right hand

A

f

d

c

b

e

 176

corner of the region covered by the image, and the resolution; the attributes dimension is
comprised of the amount of vegetation, developed, barren, forested upland, etc. in the image.
Similar to land-use, as can be seen from the figure, themes and water dimensions are also multi-
dimensional in nature.

In the paper, we will present our detailed data model, and introduce the necessary primitives
that enable the evaluation of different queries. We will also discuss what the different warehouse
operations such as drill-down, roll-up, mean in the semantic sense in the cascaded star schema,
and show how they can be carried out. We will present the architecture of our prototype and
the guidelines for implementation.

Figure 9: A Sample Cascaded Star Model

The following tables show some examples of these dimensions:

Fact table:

Land_use Temperature Water Vector Map …
Abc 44 221 111 …
… … … … …

Land-use

Temperature

Water

Vector Map

Category

Time

Spatial

Attributes

Year

Date

Timestam
p

Year

Date

Timestamp

Year

Date

Timestam
p

Land-use

(LX, LY)

(UX, UY)

Resolution

(LX, LY)

(UX, UY)

Resolution (LX, LY)

(UX, UY)

Resolution

Time

Spatial

Spatial

Time

Attributes

Types

Themes

Line

Dot

Polygon

Forested
upland

Barren

Developed

Vegetation
type

Etc.
Image ID

Temperature

Chlorophy
l

NDWT Index

Vector Map

Water

…

 177

One dimension table: “Vector Map”
Vector_map Themes Time Spatial Types
111 New Jersey 01 A
… … … … …

Another dimension table for an attribute “Time” in “Vector Map”:

Time Year Date Timestamp
01 2000 3/23/00 12:00am
… … … …

In the above example, we can see that a fact table is joined with several dimension tables as in
the star model, and each attribute in the dimension tables is self multi-dimensional with another
dimension table joined with it. In this easy way, we implement a cascaded star model for each
multi-dimensional attribute in the dimension tables, which explicitly provides support for attribute
hierarchies. However, the previous star schema cannot accomplish such multi-dimensional
attribute structures in a single way.

We want to address the difference between a cascaded star model and a snowflake model.
Someone may get the false impression at first sight that there is no big difference between these
two models since they both have multiple extensions for some spatial dimensions. However, a
snowflake model just normalizes some dimensions to reduce a big dimension table for easy
maintenance and storage saving, whereas a cascaded star model claims each dimension itself is
multi-dimensional by the nature.

6.1 OLAP Operations on the Cascaded Star Model
Now let us examine some popular OLAP operations, i.e., roll-up, and drill-down, slicing and
dicing, and pivoting, and analyze how they are performed in the spatial data cube we
constructed in a cascaded star model. OLAP are traditional data warehouse operations that
provide users to view data from different perspectives, hence, OLAP support user-friendly
environment for data analysis and prepare for advanced data mining process. In the system
architecture we proposed, it is part of the output rendering engine.

These operations have been discussed intensively in the traditional data warehouse and spatial
data cube in star model [7]. Our concentration is that how they can be efficiently operated in the
star cascaded model with selectively materialization, which means aggregating and generalizing
data from multi-dimensional attribute tables. Consider the example 1 we mentioned above. A
user may want to look at the changes in the vegetation pattern over a certain region during the
past 10 years, and see their effect on the regional maps over that time period. This query
involves two very commonly used querying operations of OLAP: “drill-down” and “roll-up”.
We constructed the time hierarchy with a partial order in the above and they underlie these two
operations. Drill-down is the process of viewing data at progressively more detailed levels, for
example, a user drills down by first looking at the vegetation pattern per year and then
comparing the vegetation pattern by specific month within different years. Roll-up is just the
opposite, which is the process of viewing data in progressively less detail. In roll-up, a user
starts with the vegetation pattern on a given month, then looks at the total pattern in that year,
and finally, compares the patterns among 10 years. With selective pre-computation of certain

 178

data cells in the multi-dimensional data cube, such as vegetation pattern for each month within
each year, we can easily process this query.

7. Related Work
Research in data warehousing is a relatively new area. In the following we review the research
contributions as well as the prototypes that are most relevant to our work. Han et al. [8,9]
proposes a spatial data warehouse model in which both spatial and non-spatial dimensions and
measures exist. It proposes spatial data cube construction based on approximation and selective
pre-computation spatial OLAP operations, such as merge of a number of spatially connected
regions. The pre-computation involves spatial region merge, spatial map overlay, spatial join,
and intersection between lines and regions.

Microsoft TerraServer [2] stores aerial, satellite, and topographic images of the earth in a
database available via the Internet, where the users are provided intuitive spatial and text
interfaces to the data. Basically terabytes of “Internet unfriendly” geo-spatial images are
scrubbed and edited into hundreds of millions of “Internet friendly” image tiles and loaded into a
data warehouse. The TerraServer adopts a “thin-client and fat-server” model, which consists of
three tiers: the client tier, the application logic tier, and the database system tier. Users can
search the data warehouse by coordinates and place names, and can easily view the images
with different resolutions by simply clicking on it. The application logic responds to the HTTP
requests and interacts with the back end database to fetch the results. The database is a SQL
server 7.0 RDBMS containing all images and meta-data of images that are pre-processed and
stored, for example, all levels of the image pyramid (7 is maximum) are pre-computed and
stored. However, this system does not provide powerful and comprehensive image pre-
processing tools such as spatial OLAP for advanced spatial data analysis. Moreover, the
RDBMS integration with image repository has inherent problems, as SQL server 7 stores
imagery in JPEG or GIF format which does not have much flexibility in handling spatial data.

However, none of the prior researchers recognize that each dimension in a data warehouse in
itself is multi-dimensional. As a result, much of the work in spatial data warehousing is based on
the star model. However, this work does not address the issue of the nature of spatial data
warehouse.

8. Conclusions and Future Research
In this paper we focused on the problem of applying data warehousing technology in order to
efficiently manage, store as well as effectively serve users of environmental and earth science
information centers. An example of such centers is the Regional Application Center, which is
collaboration between NASA, Rutgers CIMIC and New Jersey Meadowlands Commission
(NJMC). In this paper, we recognize that environmental data warehouse differs from that of a
traditional data warehouse in that, each dimension in itself is multi-dimensional in nature. We
have proposed a new data model, called the cascaded star model to accommodate this. In this
paper, we have provided a limited treatment to the OLAP operations. Our future work includes
formalizing the necessary primitives that enable the specification and execution of queries, and
the semantics of various warehouse operations including, drill-down and roll-up and the
evaluation of these operations.

 179

9. Acknowledgment
This work is supported in part by the Meadowlands Environmental Research Institute, Rutgers
University.

References
[1] Nabil R. Adam, Aryya Gangopadhyay, “Database Issues in Geographic Information
Systems”, Kluwer Academic Publishers, 1st edition, 1997.
[2] Tom Barclay, Jim Gray and Don Slutz, “Microsoft TerraServer: a spatial data warehouse,”
Proceedings of the 2000 ACM SIGMOD on Management of data, pages 307-318.
[3] Peter Baumann, “Web-enabled Raster GIS Services for Large Image and Map Databases,”
Proceedings of the ACM DEXA2001, pages 870 - 874.
[4] Wendolin Bosques, Ricardo Rodriguez, Angelica Rondon and Ramon Vasquez, "A Spatial
Data Retrieval and Image Processing Expert System for the World Wide Web," 21st
International Conference on Computers and Industrial Engineering, 1997, pages 433-436.
[5] Ron Briggs, “NSDI Demonstration Project: Final Report”,
http://www.bruton.utdallas.edu/research/usgs/usgsframe.html
[6] Volker Coors, Volker Jung, “Using VRML as an Interface to the 3D Data Warehouse”,
Proceedings of the third symposium on Virtual reality modeling language, 1998, Page
121-129.
[7] Martin Ester, Hans-Peter Kriegel, Jorg Sabder, “Knowledge Discovery in Spatial
Databases”, Invited Paper at 23rd German Conf. on Artificial Intelligence (KI ’99), Bonn,
Germany, 1999.
[8] Jiawei Han, Nebojsa Stefanovic, and Krzysztof Koperski, “Object-Based Selective
Materialization for Efficient Implementation of Spatial Data Cubes ", IEEE Transactions on
Knowledge and Data Engineering, 12(6): 938-958, 2000.
[9] J. Han, N. Stefanovic, and K. Koperski, “Selective Materialization: An Efficient Method for
Spatial Data Cube Construction'', Proc. 1998 Pacific-Asia Conf. on Knowledge Discovery and
Data Mining (PAKDD'98), Melbourne, Australia, April 1998, pp.144-158.
[10] Venky Harinarayan, Anand Rajaraman, and Jefferey D. Ullman, “Implementing Data
Cubes Efficiently”, Proceedings of ACM SIGMOD Int'l. Conf. on Management of Data,
Montreal, Canada, June 1996.
[11] R. Holowczak, N. Adam, F. Artigas, and I. Bora, "Data Warehousing for Environmental
Digital Libraries." To appear in Communications of the ACM, 2002.
[12] N. Widmann, P. Baumann, “Towards Comprehensive Database Support for Geoscientific
Raster Data,” Proceedings of ACM-GIS'97, Las Vegas/USA, November 1997.

Indexing and selection of data items in huge data sets by constructing
and accessing tag collections

Sébastien Ponce
CERN�

LHCb Experiment
sebastien.ponce@cern.ch
tel +1-41-22-767-2143

Pere Mato Vila
CERN�

LHCb Experiment
pere.mato@cern.ch

tel +1-41-22-767-8696

Roger D. Hersch
Ecole Polytechnique

Fédérale de Lausanne†

Computer Science Department
RD.Hersch@epfl.ch

tel +1-41-21-693-4357
fax +1-41-21-693-6680

Abstract

We present here a new way of indexing and retrieving data in huge datasets having a high
dimensionality. The proposed method speeds up the selecting process by replacing scans
of the whole data by scans of matching data. It makes use of two levels of catalogs that
allow efficient data preselections. First level catalogs only contain a small subset of the
data items selected according to given criteria. The first level catalogs allow to carry out
queries and to preselect items. Then, a refined query can be carried out on the preselected
data items within the full dataset. A second level catalog maintains the list of existing first
level catalogs and the type and kind of data items they are storing.

We established a mathematical model of our indexing technique and show that it consider-
ably speeds up the access to LHCb experiment event data at CERN (European Laboratory
for Particle Physics).

1 Introduction

Indexing and data selection in a huge data set having a high index dimensionality is one of
the key issue in the domain of data management. Recent papers on the subject address this

�CH-1211 Geneva 23, Switzerland
†CH-1015 Lausanne, Switzerland

181

problem in specific cases such as spatial databases [6, 5, 7], similarity searches [5, 1, 8]
or string matching [4] but do not offer global solutions. Moreover, existing methods are
outperformed on average by a simple sequential scan when the number of dimensions is
larger than approximately ten[13].

On the other hand, the variety of useful selection criteria on a given set of data is far from
being infinite. They can usually be reduced to a small number of indexes, say 20 to 30
maximum (which is already a very high dimension). Thus, from all values contained in
a data item (tens of thousands in some cases), only this very reduced subset of 20 to 30
values is relevant for the selection criteria.

This property is used to define a new indexing method based on two levels of catalogs. This
method greatly speeds up the linear selecting process by replacing scans of the whole data
by scans of matching data. Data is efficiently selected using both server side and client side
preselections and the power of the SQL language.

Section 2 presents the context of this work, i.e. the LHCb experiment at CERN and its
requirements in terms of data indexing and retrieval. Section 3 presents search results in the
domain of data indexing and emphasizes their respective strengths and weaknesses. Section
4 presents the proposed indexing schema and shows how it can be used efficiently for data
retrieval. Section 5 evaluates the performance of the new indexing method compared to
sequential scan1. Section 6 draws the conclusions.

2 Context

The work presented here is based on studies made at CERN (European Laboratory for
Particle Physics) in the context of the LHCb [10] experiment. We present here briefly the
problem and the requirements we had.

2.1 The LHCb experiment

LHCb [10] is the name of one of the future Large Hadron Collider (LHC) experiments. Its
primary goal is the study of the so called CP Violation [11]. This physical theory suggests
that, in the world of subatomic particles, the image of a particle in a mirror does not behave
like the particle itself [9]. One of the fundamental grounds of this effect is the existence of
the bottom-quark and its cousin the top-quark. This is precisely this bottom-quark, under
the form of the B-meson that the LHCb experiment intends to study. The only way to pro-
duce particles like this meson is to collide other high energy particles (accelerated protons
in the case of LHC). This collision will produce hundreds of new particles among which
the physicists will try to detect B-mesons and to measure their parameters and behavior
(especially the way they decay).

1Sequential scan is besides our method the only method which, to our knowledge, fulfills our requirements

182

2.2 Some figures

LHC will let bunches of protons collide every 25 ns, i.e. at a frequency of 40 MHz. Such
a collision is called an event and creates lots of particles (some hundreds). The different
detectors constituting LHCb are able to detect all created particles and to specify their
energy and momentum. The global output is about 1 MB of data per event across 950000
channels. This yields 40 TB of data every second !

Most of this data will not be stored since more than 99,9999% of it is not interesting.
Actually, the detector has a four level trigger system that allows a reduction of the data rate
from 40 TB/s to 20 MB/s per second, which is two million times less. This factor is due
to both a reduction of the event size to the order of 100 KB and to a reduction of the event
rate to 200 Hz. Assuming that the LHC will run 24 hours a day and 7 days a week, LHCb
will produce an order of 1010 events per year, which is one petabyte (1 PB = 1015 bytes) in
term of data size.

Table 1 summarizes the figures concerning the data being saved, indexed and later retrieved
by physicists for analysis.

Size of a data item 100 to 200 KB

Nb of items 109 to 1010 per year

Global size of the database� 1015 bytes = 1 PB per year

Data items input rate 200 Hz

Data input rate 20 to 40 MB/s

Table 1: Figures concerning LHCb data

2.3 Data selections

The analysis by physicists of the LHCb data is rather specific. It is mainly based on an
iterative process consisting in selecting some data items (typically in the order of 106) with
rather complicated selection criteria, downloading the items, running some computation on
them and modifying the selection criteria. A criterion may for example make use of the
energy of the event, of the types of particles involved or of the number of decays. The
number of iterations is rather small (in the order of 10) but the selection of the data still
appears to be the key of the physics analysis.

Another issue is the number of indexes that a given criterion uses. This is typically in the
range of 10 to 30 parameters with a mixture of numeric, boolean and strings. These indexes
are not always the same for all criteria but a few number of criterion types can be defined
(less than 10) for which the set of parameters is fixed. Due to the high dimensionality of
the event data (10 to 30 indexes), up to now, at CERN, the only data selection algorithm
was a linear scan of the whole dataset.

183

3 Related Work

There are not many research approaches addressing the issue of indexing generic data in a
high dimension space. Weber et al [13] show that there exists a dimension over which any
algorithm is outperformed by a sequential scan. Experimentations show that the sequential
scan outperforms the best known algorithms such as X-trees[2] and SR-Trees[5] for even a
moderate dimensionality (i.e.� 10).

These two algorithms are based on data partitioning methods. The ancestor of the data
partitioning method is the R-tree method [3] which was further developed under the form of
R�-Trees [6]. However, these data partitioning methods perform poorly as dimensionality
increases due to large overlaps in the partitions they define. This is due to exponential
increase of the volume of a partition when the number of dimensions grows.

The SR-Tree method tries to overcome this problem by defining a new partition schema,
where regions are defined as an intersection of a sphere and a rectangle. The X-Tree
method, on the other side tries to introduce a new organization of the partition tree which
uses a split-algorithm minimizing overlaps. The results are good at low and moderate di-
mensions but are outperformed by a sequential scan for dimensions larger than 10.

4 A two level indexing schema

The aim of our proposed schema is to allow most of the selection to be carried out using
catalogs (tag collections) that contain only a part of the data items and, for each item, only
a subset of its values (a tag). Several catalogs are built, each for a different type of query.
This allows to perform a very efficient preselection of the items before accessing the real
data items.

4.1 Tags

A tag is a subset of a data item comprising several parameters plus a pointer on this data
item. A pointer is simply the information needed to find and retrieve the data item, be it a
regular pointer (memory address), a file name, an URL or something else.

A tag contains the few values (also called parameters) of the data item that are used as
selection criteria. For a given criterion, or even a given type of criterion, the number of tag
values is small (10 to 30) which results in a tag size of 10 to 200 bytes. For example, in the
case of some physics events, one may want to include in the tag the energy, the nature of
the event and the number of particles involved.

Several types of tags can be defined, with different sizes and contents, even for the same
data item. Different tags will point to different subsets of the data items and correspond to
different criteria.

Tags are small, well structured objects that can be easily stored in a relational database.

184

Thus, they can be searched using the power of SQL-like languages. The storage of tags in
a relational database is trivial : each type of tag is stored in a different table, whose columns
are the different values included in the tag plus one for the pointer to the real data item. The
data item itself does not need to be part of a database.

Tags will be used to make preselections without loading the data items, which reduces the
amount of loaded data by a factor of 103 in the case of LHCb.

item 202

...

item n2

item 201 ptr ...y1 yp

...

Tag typesTag Collection "TCn"

Tag Collection "TC1"
Data items

Data items

item 101

item 102

...

item n1

ptr ...x1 xn

TCn

TC1

locationname type ...

type1

typek

x1, ..., xn

y1, ..., yp

name description

...

...

...

List of Tag Collections

Figure 1: Structure of the tag collections

4.2 Tag collections

As explained above, tags are subsets of data items. A tag collection is a set of tags, all of
the same type. It corresponds to a set of data items but with only a subset of the data items
values. The values themselves fulfill some criteria, such as being in the interval between a
minimal and a maximal value. Thus, two different tag collections may correspond to two
different subsets of data items, even if they use the same set of values (type of tags). These
subsets may of course overlap.

Tag collections are stored in a relational database as a table, where each line is a tag and
columns correspond to the values contained in the tags (Fig. 1). The tag collections form a
list of tag collections, each with each associated tag type.

Since tag collections only contain tags for a given subset of the data items, they act as a
first preselection on data. For example, in the LHCb experiment, a collection of tags is in
the order of 105 smaller than the database, i.e. around 10 GB. A factor 103 is due to the
tag size (section 4.1) and another 102 factor comes from the fact that, on average, less than

185

1% of the data items have a tag in a given collection, i.e. tags whose values are within the
predefined ranges associated to that collection. Thus, a collection has typically 107 to 108

entries.

Collections can be defined by any user or group of users who wants to be able to use a
new selection criterion. The creation of a new collection may either require a scan of the
full set of data items or is extracted as a subset from another collection. Scanning the full
set of data items is time consuming but will be far less frequent than the selection of data
items. We expect that there will only be 10 to 20 “base” tag collections in LHCb. All other
collections will be subsets of base tag collections.

4.3 Selection process

By selecting tags in tag collections instead of selecting directly data items, there is an
immediate gain. Only data items of interest are loaded instead of loading all items for each
selection.

This is specially interesting in the case that data items are not located in a database but in
regular files and loading a data item requires accessing a file containing many items. With
a pointer to the data item within the file, the item of interest is directly accessed and loaded.
Such a strategy of storing the actual data in regular files may actually be applied to many
problems since database management systems cannot handle petabytes of data easily.

Client

A
ccess T

ags
A

ccess D
ata

Data Server

Tag Server
1

3

5

7

2

6

8

data

tags

> 1 PB

10−100 GB

4

Figure 2: Data selection process

Furthermore, the 2-level indexing schema presented here offers a very powerful and flexible
way of applying various preselections allowing to reduce both the amount of accessed data
and the network traffic. The complete selection process is shown in Figure 2.

The steps involved in the selection process are the following :

1. The client selects a tag collection and sends a SQL query to be applied on tags from

186

this collection. The usage of a specific collection is actually a first preselection made
by the physicist.

2. The query is processed on the server side.
3. Only matching tags are sent back. This minimizes the network load.
4. A second selection may be applied on the client side, for example for queries that

cannot be formulated in SQL and which require a procedural language such asC++.
5. Once the selection on tags is complete, requests for the corresponding data items are

sent to the data server.
6. Data items are retrieved (from files, in the LHCb experiment).
7. Retrieved data items are sent to the client.
8. A last selection may be performed on the full data items, in the case that some in-

formation was missing in the tags which did not allow to perform this more narrow
selection in a previous step.

Note that the separation between client and servers (a tag server and a data item server) on
Figure 2 allows for example to replicate the tag server while keeping the data item server
at a single location .

5 Performance evaluation

Let us evaluate the performance of our indexing schema. It is hard to compare our proposed
schema to existing indexing techniques since we don’t know of other indexing techniques
except linear scanning which are able to meet our requirements.

Two of the main high-dimensionality indexing schemas are X-trees[2] and VA-file[12].
The X-Tree method is outperformed by a sequential scan for a dimension exceeding 6 (see
[13]) and VA-files are only applicable to similarity-search queries. Thus, we only compare
our performances with the performances of the sequential scan method.

5.1 Some approximations

Let us make some simplifications and approximations in order to create a model of the
proposed indexing schema.

Type of data : We only consider one data type (integers). The cost of a comparison
between two values is therefore always the same. This is not the case in real life, where
data typically consist of numbers, booleans and strings. However, it is always possible to
express the comparison cost of a data item type as a factor of a single integer comparison.

Optimizations : No optimization of the query processing on tag collections are taken
into account. This means that tag collections are searched sequentially. Thus, the gain

187

obtained by querying tag collections is really the minimum we can expect from the new
schema.

Data transfers : No optimization of data transfers are taken into account. Especially, we
do not consider pipelined schema where the data transfer of a given item could be realized
during the computation of the previous one.

Size of tag collections : For the performance analysis we consider only a single tag col-
lection with a fixed number of tags. The number of tags and the size of the tags may be
considered as an average among the different values of a real life example.

Complex queries : We do not take into account complex queries that could only be
processed by a dedicated program. In other words, step 4 of the selection process (Figure
2) does not occur here.

5.2 Theoretical model

Let us adopt the following notations :

N is the number of items in the whole database;
n is the average number of items in a given tag collection;
D is the number of values in a data item i.e. its dimension;
d is the number of values in a tag i.e. the dimension of the tag; we assume that all these

values are tested;
d0 is the number of values that are not contained in the tag but still need to be tested

(step 8 in Figure 2);
Tlat is the latency of the network which is used to transfer the data;
Ttr is the time used to transfer one value through the network; in second per value;

TIO is the time needed to load one value from disk into the memory;
TCPU is the time to compute one value, i.e. to compare it with another value;

q is the number of matching tags for the query we are dealing with;
tseq is the duration of the query using a sequential scan;
ttag is the duration of the query using the new indexing schema.

In the case of a sequential scan, the time needed to process a query is simply the time
needed for querying one data item multiplied byN. Each data item is read from disk,
transfered through the network and processed.

tseq= N (Tlat +D (Ttr +TIO)+(d+d0)TCPU)

It is independent of the size of the result.

188

The time needed to process a query using the new indexing schema is slightly more com-
plicated to compute. Using the architecture depicted in Figure 2, we can divide it into two
parts : the durationt1 of the query on tags and the durationt2 of the query on data items.
The query on tags is carried out on the server. Matching tags are transfered to the client.
The query on data items is similar to the sequential scan method.

ttag= t1+ t2

t1 = n(d TIO+d TCPU)+q(Tlat +d Ttr)

t2 = q(Tlat +D (TIO+Ttr)+d0 TCPU)

Finally :
tseq= N Tlat +N D(TIO+Ttr)+N (d+d0)TCPU (1)

ttag= 2q Tlat +(n d+q D)TIO+q(d+D)Ttr +(n d+q d0)TCPU (2)

The query duration is dependent on the numberq of matching tags. Note that the assump-
tion that tags are transfered one by one to the client corresponds to the worst case. This
could be improved by sending tags by groups.

5.3 Interpretation

The terms in equations (1) and (2) can be divided into three parts : processing time (TCPU),
network transfer time (Tlat andTtr) and data retrieval time (TIO). Let us consider them
separately here.

Processing time : the processing time ratio between tag collection access and the default
sequential scan is :

rCPU =
n d+q d0

N (d+d0)
= α

d+ γd0

d+d0
(3)

where α =
n
N

γ =
q
n

Sinceγ� 1 (comes fromq� n), we can be sure thatrCPU � α. This demonstrates that the
CPU time ratio is less than (but of the order of) the ratio between the number of tags in a
collection and the number of data items.

Network transfer time : the network transfer time ratio between tag collection access
and the default sequential scan is :

rNET =
2q Tlat +q(d+D)Ttr

N Tlat +N D Ttr

=
q
N

2Tlat +(d+D)Ttr

Tlat +D Ttr

189

Sinced� D, we finally have :

rNET � 2
q
N

rNET � 2 α γ (4)

where α =
n
N

γ =
q
n

Sinceγ� 1, the network transfer ratio is at least of the order of the ratio between the number
of tags in a collection and the number of data items. In practice, we even haveγ� 1 (we
foreseeγ� 10�2 for LHCb) and thusridle� α.

Data retrieval time : the data retrieval time ratio between tag collection access and the
default sequential scan is :

rDR=
n d+q D

N D
= α (β+ γ) (5)

where α =
n
N

β =
d
D

and γ =
q
n

Usually,β� 1 andγ� 1. ThusrDR� α. This means that, in respect to data retrieval time,
we gain far more than just the gain obtained by the preselection on data items.

Let us estimateγ. By definition, γ is the proportion of matching tags in a tag collection
for a given query. Let us consider a very simple case where every part of the query is a
comparison and is fulfilled by half of the items. In addition, let us suppose that the data is
uniformly distributed. This leads to :

γ =
1
2d and

rDR

α
=

d
D
+

1
2d

Figure 3 gives the behavior of this ratio against the dimensiond for different values of D.

Roughly, rDR
α goes down from 1 to a minimum for dimensions between 0 anddm� 8 and

linearly goes up afterwards until it reaches 1 again for dimensionD. Clearly, we can
approximaterDR by α d

D if d � dm. This is exactly our goal since the data retrieval time
becomes proportional to the loading time of the tags.

For the LHCb experiment, the dimension of a data item isD � 20000. The minimum I/O
time is reached ford� 18 andrDR<

α
1000.

6 Conclusions

We presented a new way of indexing and selecting data in huge datasets having a high index
dimensionality. The method avoids linear scanning of the whole data set. Only a minimal
set of data is scanned, namely the values stored in tag collections. The selected tags point
to the data items that are then retrieved for applying a more narrow selection.

190

10 20 30 40 50
dimension

0.2

0.4

0.6

0.8

1

r DR���������
Α

tagD=1000

D=300

D=100

D=50

Figure 3: Evolution of a majoration of the data retrieval ratio divided byα in function of
the dimension of the tag

By scanning tags in tag collections instead of a flat scan of all data items, the minimal gain
is proportional to the ratio between the number of data items and the number of tags within
the selected tag collections. In many cases, the effective gain is the minimal gain multiplied
by the ratio of the dimension of data items and the dimension of tags.

The proposed data items selection and retrieval schema was implemented at CERN, in the
context of the LHCb experiment and seems very promising. No enhancements have been
tested at this time but an implementation of a computer assisted parallelization is planned.

References

[1] C. C. Aggarwal and P. S. Yu. The IGrid index: reversing the dimensionality curse
for similarity indexing in high dimensional space. InProceedings of the sixth ACM
SIGKDD international conference on Knowledge discovery and data mining, pages
119–129, August 2000.

[2] S. Berchtold, D. A. Keim, and H.-P. Kriegel. The X-tree: an index structure for high-
dimensional data. InVLDB’96, Proc. of 22th International Conference on Very Large
Data Bases, pages 28–39, 1996.

[3] A. Guttman. R-trees : A dynamic indexing structure for spatial searching. InSIG-
MOD’84, pages 47–57, 1984.

[4] H. V. Jagadish, N. Koudas, and D. Srivastava. On effective multi-dimensional index-
ing for strings. InProc. 2000 ACM SIGMOD on Management of data, pages 403–414,
May 2000.

191

[5] N. Katayama and S. Satoh. The SR-tree: an index structure for high-dimensional
nearest neighbor queries. InProceedings of the ACM SIGMOD international confer-
ence on Management of data, pages 369–380, May 1997.

[6] B. S. N. Beckmann, H-P. Kriegel R. Schneider. The R�-tree : An Efficient and Robust
Access Method for Points and Rectangles. InSIGMOD’90, pages 322–331, 1990.

[7] Y. Sakurai, M. Yoshikawa, S. Uemura, and H. Kojima. The subspace coding method:
a new indexing scheme for high-dimensional data. InProceedings of the ninth inter-
national conference on Information knowledge management CIKM 2000, November
2000.

[8] K.-T. Song, H.-J. Nam, and J.-W. Chang. A cell-based index structure for similarity
search in high-dimensional feature spaces. InProceedings of the 16th ACM SAC2001
symposium on on Applied computing, pages 264–268, March 2001.

[9] C. web pages. A matter of symmetry. URL : http://lhcb-public.web.cern.ch/lhcb-
public/html/symmetry.htm.

[10] C. web pages. Experiments in B-physics. URL : http://lhcb-public.web.cern.ch/lhcb-
public/html/bphysicsexpts.htm.

[11] C. web pages. What is CP-violation? URL : http://lhcb-public.web.cern.ch/lhcb-
public/html/introduction.htm.

[12] R. Weber and S. Blott. An approximation-based data structure for similarity search.
Technical Report 24, ESPRIT project HERMES (no. 9141), October 1997. Available
at http://www-dbs.ethz.ch/�weber/paper/HTR24.ps.

[13] R. Weber, H.-J. Schek, and S. Blott. A Quantitative Analysis and Performance Study
for Similarity-Search Methods in High-Dimensional Spaces. In A. Gupta, O. Shmueli,
and J. Widom, editors,VLDB’98, Proc. of 24th International Conference on Very
Large Data Bases, pages 194–205. Morgan Kaufmann, 1998.

192

Data Placement for Tertiary Storage

Jiangtao Li
Department of Computer Sciences

Purdue University
West Lafayette, IN 47907 U.S.A.

jtli@cs.purdue.edu
Phone: + 1 765 494-6008

Fax: + 1 765 494-0739

Sunil Prabhakar
Department of Computer Sciences

Purdue University
West Lafayette, IN 47907 U.S.A.

sunil@cs.purdue.edu
Phone: + 1 765 494-6008

Fax: + 1 765 494-0739

1 Abstract

In this paper we address the important problem of data placement in tertiary storage taking
object relationships into account. This work is in contrast to earlier schemes that either
focus on specific data types or assume that data objects are accessed independently. Five
new data placement schemes are developed. The effectiveness of these schemes is shown
through simulation. The proposed schemes, in particular the Edge Merge scheme, give
superior performance over schemes optimized for independent access.

We also show that our schemes can easily adapt to variations in the access pattern.
This also allows the schemes to be employed when no prior information about the access
pattern is available. Interestingly, our results show that the probabilities of object access
do not have a big impact on performance. On the other hand, changes to the clustering of
nodes have a significant effect. This result underscores the importance of the relationships
between objects for placement of data. The use of controlled replication for “free” is also
developed and shown to be effective in further improving performance. The study also
evaluates the impact of a secondary disk layer and prefetching.

2 Introduction

The tertiary storage layer in a hierarchical storage system is characterized by very large
data volume and very high random access latency. Both attributes are directly related to
the use of numerous cheap removable media sharing a small number of expensive drives
and robot mechanisms. The high access latency is typically dominated by media switch
time (for certain tape systems, however, the seek time may exceed the media switch time).
With ever increasing demands for storing very large volumes of data for applications such
as telemedicine, online multimedia document systems, and other large multimedia repos-
itories, large amounts of live data are being stored on tertiary storage systems. Random

193

accesses to data stored on tertiary storage can suffer unacceptable delays as media are
swapped on drives. The need for swapping media is dictated by the placement of data.
Judicious placement of data on tertiary storage media is therefore critical, and can signifi-
cantly affect the overall performance of the storage system.

The placement of data for specific domains such as multi-dimensional arrays [1], re-
lational databases [15], and satellite images [21] has been addressed earlier. Research on
tertiary storage placement in a more general setting has been addressed under the assump-
tion that the data objects are accessed independently [2]. This assumption is rarely valid in
practice – data objects typically are related and this is reflected in the access of the data.
For example, online manuals contain hyperlinks to related sections and other manuals, a
browsing session in a multimedia repository is typically guided by similarity between ob-
jects, and various test results of a given patient are likely to be accessed during diagnosis
or treatment. In this paper we address the problem of placement of data on tertiary storage
in a general setting without the assumption of independent access. Our approach is to ex-
ploit the nature of the access to the data to determine an optimal placement. This work is
orthogonal to related issues of data migration and scheduling. The problem of placement
of data on tertiary storage can be broken down into two sub-problems due to the significant
cost of switching media: i) allocation of data to media; and ii) placement of data within the
assigned medium. The problem of placing data within media has received some attention
and we employ existing solutions to this problem such as [2]. The focus of our study is on
the sub-problem of allocating data to media in order to minimize switching.

We propose and evaluate several placement schemes for tertiary storage systems based
upon data access patterns. The schemes can be employed even if the access pattern is
not known a priori, and can dynamically adapt to changes in access patterns. The study
considers the impact of the secondary storage buffer and caching policy on the placement,
and effective use of prefetching based upon the placement and access pattern. In an earlier
study we demonstrated that for the case of multimedia documents replication of objects
is an effective technique for reducing switching and improving performance. We study
the use of replication of objects on multiple media for the general case in this study. The
effectiveness of the proposed schemes is evaluated using a detailed hierarchical storage
simulator. Our results show that significant improvements (as much as 80% reduction in
average waiting time) can be achieved with our placement schemes. The remainder of the
paper discusses the issues involved, our proposed approaches, and sample experimental
results. Further details and results will be given in the full version of the paper.

3 Related Work

The placement of data for specific domains such as multi-dimensional arrays [1], relational
databases [15], and satellite images [21] has been addressed earlier. Research on tertiary
storage placement in a more general setting has been addressed under the assumption that
the data objects are accessed independently. Placement schemes based upon independent

194

document access probabilities and no replication have been proposed in [2, 18]. Optimal
arrangement of cartridges and file-partitioning schemes for carousel-type systems are in-
vestigated in [17]. Placement schemes for data on optical disks are developed in [3]. To
the best of our knowledge, our work is the first to address the issues of placement of related
objects (in a general setting) and replication.

Other researchers have addressed the use of hierarchical storage systems for multimedia
data. A cache replacement technique for managing secondary storage buffers when multi-
media objects are stored on tertiary storage has been developed by Ghandeharizadeh et al
[6]. The use of a pipelining mechanism that avoids the need for complete materialization
of an object on disk before initializing playback is presented in [5]. We have developed a
prefix-caching scheme with low jitter and startup latency for storing continuous media data
[14]. Storing video on hierarchical storage has also been studied in [20, 19]. The study
addresses I/O bandwidth issues at the various levels of the storage hierarchy. Scheduling
schemes for tertiary storage libraries are discussed in [4, 13, 8, 11] – any of these tech-
niques can be applied in conjunction with our research to further improve performance. In
[10] a prefetching algorithm based upon Markov-chain prediction of access is developed.
Models of tape systems and tertiary storage system parameters can be found in [7, 9].

4 Data Placement Schemes

In this section we first explain the nature of access for related objects. This is followed
by a description of the proposed tertiary placement schemes that take into account the
relationships between objects. Then we discuss the issues of adaptive placement, impact of
secondary storage, replication and prefetching.

4.1 Access Pattern for Related Objects

For efficient storage and retrieval of data it is critical to take into account the data access
pattern. Data objects can be accessed either directly, or through a link from another object.
Independent, or direct access to an object can be captured simply by the probability of ac-
cess. In addition to direct access to objects, users may access objects based upon links from
other objects (e.g HTML pages with links to other pages, or hyperlinks between manual
pages). Such access is also very common in a browsing scenario whereby users simply fol-
low links of interest. A user would typically begin by accessing an object and then possibly
following some number of interesting links. If none of the links are interesting, the user
may directly access some other object.

A Browsing Graph (BG) can be used to capture such access patterns. The browsing
graph consists of labeled nodes and labeled edges. Each node represents an object and
the label of the node gives the probability that the node will be accessed independently of
the previous visited node. A directed edge between two nodes represents a link from one
object to the other and the edge label gives the probability that the edge would be followed.

195

The sum of the probability of all edges going out of an object is not necessarily 1.0, since
it is possible that none of the edges will be followed. We use the term birth probability to
represent the probability of independent access to objects and death probability to represent
the probability that once the node is accessed, none of its edges will be followed. The death
probability of a node is simply 1 - (sum of outgoing edge probabilities).

4.2 Data Placement Schemes

Tertiary storage suffer from high access latency. The access cost in tertiary storage is
dominated by the media exchange operation and head position delay. The goal of data
placement is to minimize the expected access cost and reduce latency. In [2] it is shown
that a placement whereby the objects are placed sequentially in decreasing order of their
access probabilities is optimal. We call this the Birth Probability Scheme. This result,
however, is based upon the assumption that the objects are accessed independently.

Static Probability Scheme: The frequency of an object being accessed is usually dif-
ferent from its birth probability. The object birth probability is the probability of the object
being accessed directly, while the static probability is the probability of being accessed di-
rectly or indirectly. In other words, static probability represents the frequency of the object
being requested. Given the user browsing graph, the static probability of an object can be
easily computed by simulation. Our static probability data placement scheme is that the
objects are placed sequentially in decreasing order of their static probabilities.

Edge Merge Scheme: This scheme explicitly takes into account the links between ob-
jects. Once an object is requested, it is very likely that objects with high probability links
from this object will be accessed next. If such neighbors are placed on the same medium,
a medium exchange can be avoided. The main idea of this scheme is therefore to place
strongly related objects on the same medium. Ideally, all related objects are placed on the
same medium. However, the medium capacity will not allow this. Therefore related objects
may have to be spread across multiple media if the “cluster” of related objects is large. On
the other hand, if there are small “clusters” then the problem is to pack as many clusters as
possible on a single medium.

The basic idea behind edge merge is the following: Not all linked objects can be placed
together; therefore, we give priority to higher probability links. To achieve this, we start
merging objects that are linked by high probability edges into a new object. We define the
new object’s birth probability to be equal to the sum of that of the merged objects. Links
into and out of the merged objects connect to the new object. Objects are merged in de-
creasing order of the link probabilities. Merging is not done if the the cumulative size of the
resultant object will be larger than the medium capacity. When no further objects can be
merged, the cumulative objects are allocated to media. This allocation follows the optimal
scheme of [2] in decreasing order of the cumulative static probability.

Note that when two objects are merged, the cumulative birth probability is simply the

196

sum of the birth probabilities of the objects. Similarly, the probability for incoming edges
from the same object are merged. For outgoing edges, a weighted sum of the probabilities
is used if both merging objects have edges to the same object. The summing is done ac-
cording to the static probability of the merging objects. The resulting static probability of
the merged objects are computed in a manner similar to that explained earlier for the Static
Probability scheme.

Hot Edge Merge Scheme: This scheme is very similar to the Edge Merge scheme. The
only difference is that only edges that have a probability greater than a preset value (i.e. the
“hot” edges) are merged. The idea is that this scheme will result in media with very high
probability of access which will remain loaded most of the time.

Birth Hop Scheme: This scheme presents an alternative technique for combining
direct and indirect access patterns. As in the hot edge merge scheme, we hope to use
both object access probability and browsing graph information. The birth hop scheme
works as follows. We begin by assigning the object with the highest birth probability to a
blank medium. Following this step, we place as many objects as possible onto the same
medium in decreasing order of either edge probability (from objects already allocated to
the medium) or birth probability. Once the medium is full, we assign the object, from those
that are unallocated, with the highest birth probability to a new medium and repeat the pro-
cess. This operation is repeated until all objects are allocated.

Static Hop Scheme: This scheme is similar to birth hop scheme, except static prob-
ability instead of birth probability. The idea of this scheme is to allocate an object to a
medium, we can either choose an object with highest static probability, or we can choose
an object that has high probability edges with objects already on that medium.

4.3 Adaptive Placement

A key component of the proposed data placement schemes is knowledge of the access
pattern. Although it is useful to know this a priori, it is not critical to the success of the
proposed approach. Such information can easily be gathered from the system by keeping
track of object requests. Based upon the observed access pattern, the data placement on
tertiary storage can be tuned. In Section 5 we show the effectiveness of this adaptive
placement in response to changes in the access pattern. In the complete absence of access
information, the placement can begin with an initial guess for the access patterns followed
by progressive refinement as user requests are serviced and the actual pattern is discovered.

4.4 Impact of Secondary Storage

In hierarchical storage systems, the secondary storage disks typically serve as a cache for
data on tertiary storage. Depending upon the size of the disk layer and the caching (or
migration) policy, some of the requests for objects are serviced directly from disk without
impacting tertiary storage. The effect of the disk cache can be translated into a change in

197

the effective access pattern observed at the tertiary level. An adaptive strategy for tertiary
storage can exploit this change in access pattern to generate a placement better suited for
the available secondary storage cache.

4.5 Replication

Data objects that have strong links to objects in different media are likely to cause excessive
swapping of media. While such situations will hopefully not arise often, it is possible that
an object may have strong links to objects in different clusters. These two clusters may
be placed on separate media due to their size. To overcome this, we propose to selectively
replicate objects on multiple media based upon their edge probabilities to objects in various
media. Furthermore, for schemes that place related collections of objects, it is possible that
there are segments of media that not filled - these can be used to replicate objects for “free”
since the extra space is not large enough for a cluster and would otherwise be empty.

4.6 Prefetching

Schemes that place collections of related objects together aim to avoid swapping of media
for a sequence of requests from a user. It is possible, however, that in order to service
the requests of other users, the media may be swapped. This could result in thrashing
between the users and expensive swapping. To avoid this situation we investigate the use of
prefetching of related objects from a medium before ejecting a loaded medium. Prefetching
further delays pending requests and also uses up disk space. It is therefore important to
make a good judgment about when and how much to prefetch.

5 Experimental Results

In this section we demonstrate the effectiveness of our new data placement schemes to-
wards reducing average response time. The results are based upon a detailed CSIM [16]
simulation model of the system. The tape library is modeled on the Ampex DST tape li-
brary configured with Ampex DST 310 drives [9]. Further details of the tape simulator can
be found in [12]. The Secondary storage is configured with four 5GB disks, totaling 20
GB of disk storage. The tertiary storage component is modeled on a robotic tape library
with four Ampex DST drives. Some of the important parameters for the tape simulation are
provided in Table 1. The experiments were conducted on a synthetic collection of 10,000
objects of size 100 Megabytes each. The tape library is configured with 2000 tapes each of
size 2GB, giving a total of 4TB of tertiary storage.

The set of objects and the access pattern is generated as follows. The birth probability of
objects follows a Zipf distribution. In order to capture the effects of links between objects,
we introduce the notion of edges between objects. To determine the edges, the objects are
divided into clusters. The number of objects in a cluster is uniformly distributed between
5 and 20. Some (5%) of the objects are considered to be outliers that do not belong to any
cluster. For each object, a death probability, ��, is picked uniformly distributed between

198

Parameter Value(s) Meaning

TAPE SIMULATION PARAMETERS
RWD OVHD 0.0006 seconds Rewind Overhead
SEEK OVHD 0.0006 seconds Seconds
SEEK SPEED 110 MB/s Tape seek rate
EJECT TIME 4 seconds Time to eject a tape
LOAD TIME 10.1 seconds Time to load a tape on a drive
PICK TIME 3.7 second Time for robot to grab a tape
PUT TIME 1 second Time for robot to drop a tape

MOVE TIME 1.9 second Time for robot to move
XFER SPEED 14.2 MB/s Tape transfer speed
NUM TAPES 2000 Total number of tapes
TAPE CAP 2 GB Tape cartridge capacity

NUM DRIVES 4 Number of Drives
DISK SIMULATION PARAMETERS

ROT SPEED 4002 Rotational speed RPM
SEC TR 72 No. of sectors per track

CYLINDERS 1962 No. of cylinders
TR CYL 19 No. of tracks per cylinder

TRKSKEW 8 Track skew in sectors
CYSKEW 18 Cylinder skew in sectors

CNTRL TIME 1.2 Controller overhead (ms)
CAPACITY 5 GB Disk storage capacity

Table 1: Table of Parameters

0.05 and 0.2. This is the probability that the user does not follow any of the links from this
object. Edges to other objects within the cluster are created and assigned probabilities that
are uniformly distributed so as to add to 1 - ��.

It is important to note that although the access pattern is an input to the placement al-
gorithm, it is not crucial that this pattern be accurate. As mentioned earlier, if the access
pattern is unknown or changes after the placement, the system can adapt by reorganizing
the data according to the new observed access pattern. Experimental evidence to support
this claim is presented in Subsection 5.2.

In each experiment, we run a stream of requests. The stream begin by requesting a
starting object identified using the birth probability for that object. As soon as this object
is retrieved, the user chooses to either follow one of the edges from this object, or to pick
another object independently. This choice is based upon the edge probabilities and the
death probability of the currently accessed object. In each test, we run 1000 requests based
upon which we compute the average response time.

199

5

10

15

20

25

30

35

40

1 2 3 4

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(s
ec

)

Number of Drives

Birth
Static

Edge Merge
Hot Edge Merge

Birth + Hop
Static + Hop

Figure 1: Average Response Time for Different Data Placement Schemes

5.1 Different Data Placement Schemes and Performance

We begin by studying the relative behavior of the different schemes in reducing average re-
sponse time. Figure 1 shows the average response time by different schemes. The number
of drives was varied from 1 to 4. As can be seen from the graph, the ���� ����� scheme
gives the best performance, and the ���	
 scheme has the worst performance. The �	�	�
scheme has less average response time than ���	
 scheme. The Edge Merge scheme re-
duces the average access time by 77% compared to the Static scheme for a single drive. We
can also observe that as the number of drives increases, the average response time reduces
for all schemes. The superior performance of Edge Merge was observed in all our experi-
ments. The scheme that does not consider the relationships between objects (Birth) has the
poorest performance. Similarly, the Static scheme has poor performance since it does not
use the link information effectively.

5.2 Adapting to Variations in Access Pattern

In the preceding experiment it was assumed that the access pattern is known a priori. This
information is used to generate the placements. If the access pattern is unknown or changes
after the placement, the placement may be less beneficial. The actual access pattern can
easily be discovered by recording the requests for objects. Based upon this input, a more
effective placement can be achieved. Note that through observation, it is not possible to
distinguish between direct and indirect access to an object. When object � is requested fol-
lowing a request for object �, it is not clear whether or not � was accessed due to a link from
� to �. Consequently, the schemes based upon birth probability would not be applicable.
We now investigate the impact of these variations.

In Figures 2 (a) and (b) we study the impact of random changes in the object access
probabilities and the edge probabilities respectively. In each experiment the placement is

200

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(s
ec

)

Pencentage chage in edge probabilities

Original Edge Merge Placement
Original Static + Hop Placement

Original Static Placement
Modified Static + Hop Placement

Modified Static Placement

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(s
ec

)

Pencentage chage in node probabilities

Original Edge Merge Placement
Original Static + Hop Placement

Original Static Placement
Modified Static + Hop Placement

Modified Static Placement

(a) (b)

Figure 2: Impact of Changes in (a) Edge; and (b) Node probabilities

generated based upon an initial access pattern. Next, a random subset of 10% of the nodes
(edges) are chosen and their probabilities are altered to varying degrees. The performance
is tested using this altered access pattern. The frequency of access to documents based upon
this altered graph is captured and a new placement is made based only upon these observed
frequencies (with no other knowledge of the changed access pattern). Using this adapted
placement, the performance is again measured. This is repeated for varying degrees of
changes from the original access pattern. From the graphs we observe that changes in edge
and node probabilities have very little impact on the data placement schemes. These ex-
periments show the impact of changes in the distribution of the node and edge probabilities
while keeping the structure of the access pattern fixed. In other words, the results showed
that if we know the groups of objects that are related, exact knowledge of the probabilities
is not critical.

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(s
ec

)

Pencentage chage in node’s cluster

Original Edge Merge Placement
Original Static + Hop Placement

Original Static Placement
Modified Edge Merge Placement
Modified Static + Hop Placement

Modified Static Placement

Figure 3: Impact of Changes in Node’s cluster

In this experiment we study the impact of poor knowledge (or lack of knowledge) about

201

the grouping of related objects. In Figures 3 we study the impact of limited random changes
in the object cluster composition. The placement is generated based upon an initial access
pattern. Next, a random subset of 5%, 10%, etc of the nodes are chosen and the node’s
cluster membership is changed. The performance is tested using this altered access pat-
tern. We also measure the performance of an adapted placement based upon the observed
access pattern. As can be seen in the graph, changes to cluster composition result in an
increase in the average response time for both placement schemes. However, we see that
after adapting to the new pattern, we are able to reduce the response time. The response
time is reduced sharply in ���� ����� scheme, it drop to same level as no change to the
access pattern. We can also notice that even without adapting to the new placement, the
���� ����� scheme still performs better than �	�	� scheme.

From these three graphs we see an interesting result: information about the clustering or
grouping of related objects is more critical than exact information about the probabilities of
access. This is good news since these relationships are generally easy to discover statically
based upon the application semantics (e.g. urls in a given web page). The results also
underscore the importance of not making the assumption of independent access.

5.3 Impact of Secondary Storage

10

15

20

25

30

35

0 2 4 6 8 10 12 14 16 18 20

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(s
ec

)

Size of Secondary Storage (GB)

Modified Static Placement
Modified Edge Merge Placement

Original Static Placement
Original Edge Merge Placement

Figure 4: Impact of Secondary Storage

In this experiment, we study the impact of the size of the disk buffer. In hierarchical
storage system, the secondary storage disks typically serves as a cache for data on tertiary
storage. User requests for data cached in the buffer are served without any access to tertiary
storage. If the requested object is not in the disk cache, the object is copied from tertiary
storage to buffer, then from the buffer to the user. A buffer replacement policy is used to
create space when the buffer becomes full. In our experiments, we use the popular Least
Recently Used (LRU) cache replacement policy.

202

Figure 4 presents the performance for the various schemes for different buffer sizes.
The buffer size is varied from 400MB upto 20GB. We can observe from the graph that as
the size of the buffer increases, the average response time decreases for all schemes. We
also observe that the presence of a disk cache does not change the relative performance of
the ���� ����� scheme and the �	�	� scheme.

Since we have secondary storage as cache. The effect of the disk cache can be translated
into a change in the effective access pattern observed at the tertiary level. The hot objects
(objects with high static probability) may not be hot at the tertiary level since these objects
may always be cached on disk. In order to account for this change in the access pattern,
we can adapt the placement based upon the observed access pattern at the tape level as was
done in Section 5.2. In Figures 4, we study our new data placement based on observed
access pattern. As we can seen from the graph, the new adapted data placement slightly
better than original data placement.

5.4 Impact of Replication

In our original model, each object only has one copy in tertiary storage. To replicate ob-
jects on tertiary storage, there are two approaches. The first approach is to replicate some
frequently requested objects. We can use this approach with the ���	
 and �	�	� schemes.
However, disk caching will reduce the effectiveness of this approach because most of hot
objects will reside in cache. The second approach is to replicate related objects when free
space is available on a medium. This approach works for ���� ����� scheme and ��	

���� ����� scheme. In our experiment, we mainly study the ���� ����� scheme with
the second approach due to its superior performance. Unused segments on a medium are
filled using the following rules. First objects that have strong connections with objects al-
ready in the medium are replicated. If space still remains after considering such objects,
hot objects are replicated. The results of the experiment are shown in Figure 5. It can be
seen that the free data replication results in a noticeable improvement in performance.

5.5 Prefetching Issues

As stated in the last section, prefetching related objects can be beneficial. The disadvantage
is that prefetching delays pending requests further and uses up disk space. In this subsec-
tion, we study the impact of prefetching for the proposed schemes. In order to see the
impact of the amount of prefetching performed, we tested our six schemes with different
prefetching sizes. In this experiment prefetching is performed whenever possible. When
a new tape is loaded onto the drive, any object not in the disk cache may be prefetched.
The total amount of data prefetched from a single medium is varied from 0 to 300 MB.
The results of the experiment are shown in Figure 6. As can be seen, most schemes benefit
from prefetching when the prefetch size is 100 MB. For larger sizes, only the Edge Merge
scheme benefits – the average response time is reduced by 13%. This is explained by the
fact that the Edge Merge scheme is based on the relationship between objects. When one
object is retrieved, the most connected objects are likely to be in the same medium, so

203

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

8

1 2 3 4

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(s
ec

)

Number of Drives

Edge Merge Placement without Replication
Edge Merge Placement with Replication

Figure 5: Impact of Replication on Edge Merge Scheme

10

15

20

25

30

0 100 200 300

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(s
ec

)

Size of Prefetching (MB)

Birth
Static

Edge Merge
Hot Edge Merge

Birth + Hop
Static + Hop

Figure 6: Impact of Prefetching on Different Schemes

prefetching is beneficial. Prefetching is not good for the Birth Scheme because under this
scheme related objects are scattered in different media. In fact the penalty of prefetching
larger than 100MB of data is higher than the benefit.

Next we study the choice of when to prefetch with the Edge Merge scheme in order
to make prefetching most effective. In the last experiment we prefetched blindly. In this
experiment, we prefetch only if there is a suitable object. There are two kinds of candidates
for prefetching when a medium is loaded for retrieving object ��: i) objects with strong
links from��; and ii) objects with a large static probability. The experiment is controlled by
two parameters: a minimum edge probability (say �����) and a minimum static probability
(say �����). If an object in same medium has edge probability greater than ����� or static
probability greater than �����, that object will be a prefetching candidate. Since we cannot

204

prefetch all candidates the amount of data prefetched is limited. The results are shown in
Figure 7. Only Edge Merge is studied, with several prefetching policies. We study 4
policies: i) ����� = 0.5, ����� = 0.005, this is most restrictive policy; ii) ����� = 0.3,
����� = 0.0003, preference is given to high static probability objects; iii) ����� = 0.05,
����� = 0.005, preference is for high edge probability objects; and iv)����� = 0.05, �����

= 0.0003, this is the most liberal policy. As we can observed from graph the most liberal
policy gives better performance than the most strict policy. The two schemes that have a
low threshold for the edge probability give better performance for small prefetch sizes, but
their performance degrades for larger prefetch sizes.

9.6

9.8

10

10.2

10.4

10.6

10.8

11

11.2

11.4

0 100 200 300

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(s
ec

)

Maximum Size of Prefetching (MB)

min edge 0.5, min static 0.005
min edge 0.3, min static 0.0003
min edge 0.05, min static 0.005

min edge 0.05, min static 0.0003

Figure 7: Impact of Different Prefetching Policies on Edge Merge Scheme

6 Conclusion

In this paper we address the important problem of data placement in tertiary storage taking
object relationships into account. We also study the advantage of limited replication in this
setting. This work is in contrast to earlier schemes that either focus on specific data types
or assume that data objects are independently accessed. To the best of our knowledge, this
is the first study to explore these issues. We propose five new data placement schemes. The
effectiveness of these schemes in reducing average response time is shown through exten-
sive experimentation using a detailed simulator. We find the Edge Merge scheme has best
performance. The performance of placement schemes that are known to be optimal under
the assumption of independent access is not as good as that of the proposed schemes.

We also show that our schemes can easily adapt to variations in the access pattern. In
fact this allows the schemes to be employed when no prior information about the access
pattern is available. The schemes progressively adapt to give good performance as the
access pattern is learned. Capturing the access pattern is easily achieved at the tertiary
storage level. In all cases, adjusting the placement to the new observed pattern resulted in

205

significantly improved performance. Interestingly, our results show that the probabilities
of access (node and edge) do not have a big impact on our Edge Merge scheme. Changes
to the clustering of nodes, on the other hand, has a greater effect. This goes to show the
importance of the inter-relationships between objects. The use of controlled replication for
“free” is also developed and shown to be effective in improving performance further. The
impact of disk caching is easily handled in a manner similar to that of variation in access
patterns. The effective access pattern at the tertiary layer is measured and used to place the
data, rather than the overall access pattern. The techniques are coupled with prefetching
which is found to be beneficial for the Edge Merge scheme.

Overall, we see that the proposed techniques are very effective in placing data on ter-
tiary storage. The techniques perform much better than schemes that are optimal under the
assumption of independent access. In our experiments the Edge Merge scheme achieved as
much as 77% reduction in average access time over the state-of-the-art scheme (Static).

Acknowledgment This work was supported by the National Science Foundation under
CAREER grant IIS-9985019, and Research Infrastructure Grant 9988339-CCR.

References

[1] L. T. Chen, R. Drach, M. Keating, S. Louise, D. Rotem, and A. Shoshani. Efficient
organization and access of multi-dimensional datasets on tertiary storage systems. In
Information Systems, volume 20, pages 155–83. Elsevier Science, 1995.

[2] S. Christodoulakis, P. Triantafillou, and F. Zioga. Principles of optimally placing data
in tertiary storage libraries. In VLDB’97, Proc. of Intl. Conf. on Very Large Data
Bases, 1997, Athens, Greece, pages 236–245, 1997.

[3] D. A. Ford and S. Christodoulakis. Optimizing random reterievals from clv format
optical disks. In Proceedings of the Int. Conf. on Very Large Data Bases, pages 413–
22, Barcelona, Spain, September 1991.

[4] C. Georgiadis, P. Triantafillou, and C. Faloutsos. Scheduling and performance of
robotic tape libraries in video server environments. Technical report, Multimedia
Systems Institute of Crete (MUSIC), Tech. Univ. of Crete, Crete, Greece, 1997.

[5] S. Ghandeharizadeh, A. Dashti, and C. Shahabi. Pipelining mechanism to minimize
the latency time in hierarchical multimedia storage managers. Computer Communi-
cations, 18:170–184, march 1995.

[6] S. Ghandeharizadeh and C. Shahabi. On multimedia repositories, personal computers,
and hierarchical storage systems. In Proc. of ACM Int. Conf. on Multimedia, 1994.

[7] B. K. Hillyer and A. Silberschatz. On the modeling and performance characteristics
of a serpentine tape. In SIGMETRICS, pages 170–9, Canada, 1996.

206

[8] B. K. Hillyer and A. Silberschatz. Random I/O scheduling in online tertiary storage.
In Proc. ACM SIGMOD Int. Conf. on Management of Data, Canada, 1996.

[9] T. Johnson and E. L. Miller. Performance measurements of tertiary storage devices.
In Proc. of 24rd Intl. Conf. on Very Large Data Bases, pages 50–61, New York, 1998.

[10] A. Kraiss and G. Weikum. Vertical data migration in large near-line document
archives based on markov-chain predictions. In Proceedings of 23rd International
Conference on Very Large Data Bases, pages 246–255, Athens, Greece, August 1997.

[11] S. More, S. Muthukrishnan, and E. Shriver. Efficiently sequencing tape resident jobs.
In Proc. ACM Symp. on Principles of Database Systems, 1999.

[12] S. Prabhakar. An overview of current tertiary storage technology and research. Mas-
ter’s thesis, University of California, Santa Barbara, 1998.

[13] S. Prabhakar, D. Agrawal, A. El Abbadi, and A. Singh. Scheduling tertiary I/O in
database applications. In Proc. of the 8th International Workshop on Database and
Expert Systems Applications, pages 722–727, Toulouse, France, September 1997.

[14] S. Prabhakar and R. Chari. Minimizing latency and jitter for large scale multimedia
repositories through prefix caching. Technical Report CSD 01-018, Department of
Computer Sciences, Purdue Univeristy, September 2001.

[15] S. Sarawagi. Database systems for efficient access to tertiary memory. In Proc. of 14th
IEEE Symp. on Mass Storage Systems, pages 120–6, Monterey, California, 1995.

[16] H. D. Schwetman. CSIM: A C-based, process-oriented simulation language. In Pro-
ceedings of the 1986 Winter Simulation Conference, pages 387–396, December 1986.

[17] S. Seshadri, D. Rotem, and A. Segev. Optimal arrangements of cartridges in carousel
type mass storage systems. The Computer Journal, 37(10):873–887, 1994.

[18] P. Triantafillou, S. Christodoulakis, and C. Georgiadis. Optimal data placement on
disks: A comprehensive solution for different technologies. Technical report, Multi-
media Systems Institute of Crete (MUSIC), Tech. Univ. of Crete, Greece, 1996.

[19] P. Triantafillou and T. Papadakis. On-demand data elevation in hierarchical multi-
media storage servers. In Proc. of 23rd Intl. Conf. on Very Large Data Bases, pages
226–235, Athens, Greece, August 1997.

[20] P. Triantafillou and T. Papadakis. Exploiting tertiary storage for performance improve-
ment in video-on-demand servers. Technical report, Multimedia Systems Institute of
Crete (MUSIC), Technical University of Crete, Crete, Greece, 1998.

[21] J. Yu and D. DeWitt. Processing satellite images on tertiary storage: A study of the
impact of tile size on performance. In 5th NASA Goddard Conf. on Mass Storage
Systems and Technologies, pages 460–476, College Park, Maryland, Sept. 1996.

207

209

Storage Resource Managers:
Middleware Components for Grid Storage

Arie Shoshani, Alex Sim, Junmin Gu
Lawrence Berkeley National Laboratory

Berkeley, California 94720
{shoshani, asim, jgu}@lbl.gov

tel: +1-510-486-5171
fax: +1-510-486-4004

Abstract

The amount of scientific data generated by simulations or collected from large scale
experiments have reached levels that cannot be stored in the researcher’s workstation or
even in his/her local computer center. Such data are vital to large scientific
collaborations dispersed over wide-area networks. In the past, the concept of a Grid
infrastructure [1] mainly emphasized the computational aspect of supporting large
distributed computational tasks, and managing the sharing of the network bandwidth by
using bandwidth reservation techniques. In this paper we discuss the concept of Storage
Resource Managers (SRMs) as components that complement this with the support for the
storage management of large distributed datasets. The access to data is becoming the
main bottleneck in such “data intensive” applications because the data cannot be
replicated in all sites. SRMs are designed to dynamically optimize the use of storage
resources to help unclog this bottleneck.

1. Introduction

The term “storage resource” refers to any storage system that can be shared by multiple
clients. We use the term “client” here to refer to a user or a software program that runs on
behalf of a user. Storage Resource Managers (SRMs) are middleware software modules
whose purpose is to manage in a dynamic fashion what resides on the storage resource at
any one time. SRMs do not perform file movement operations, but rather interact with
operating systems, mass storage systems (MSSs) to perform file archiving and file
staging, and invoke middleware components (such as GridFTP) to perform file transfer
operations. There are several types of SRMs: Disk Resource Managers (DRMs), Tape
Resource Managers (TRMs), and Hierarchical Resource Managers (HRMs). We explain
each next. Unlike a storage system that allocates space to users in a static fashion (i.e. an
administrator’s interference is necessary to change the allocation), SRMs are designed to
allocate and reuse space dynamically. This is essential for the dynamic nature of shared
resources on a grid.

A Disk Resource Manager (DRM) manages dynamically a single shared disk cache. This
disk cache can be a single disk, a collection of disks, or a RAID system. The disk cache
is available to the client through the operating system that provides a file system view of

210

the disk cache, with the usual capability to create and delete directories/files, and to open,
read, write, and close files. However, space is not pre-allocated to clients. Rather, the
amount of space allocated to each client is managed dynamically by the DRM. The
function of a DRM is to manage the disk cache using some client resource management
policy that can be set by the administrator of the disk cache. The policy may restrict the
number of simultaneous requests by each client, or may give preferential access to clients
based on their assigned priority. In addition, a DRM may perform operations to get files
from other SRMs on the grid. This capability will become clear later when we describe
how DRMs are used in a data grid. Using a DRM by multiple clients can provide an
added advantage of file sharing among the clients and repeated use of files. This is
especially useful for scientific communities that are likely to have an overlapping file
access patterns. One can use cache management policies that minimize repeated file
transfers to the disk cache for remote grid sites. The cache management policies can be
based on use history or anticipated requests.

A Tape Resource Manager (TRM) is a middleware layer that interfaces to systems that
manage robotic tapes. The tapes are accessible to a client through fairly sophisticated
Mass Storage Systems (MSSs) such as HPSS, Unitree, Enstore, etc. Such systems
usually have a disk cache that is used to stage files temporarily before transferring them
to clients. MSSs typically provide a client with a file system view and a directory
structure, but do not allow dynamic open, read, write, and close of files. Instead they
provide some way to transfer files to the client’s space, using transfer protocols such as
FTP, and various variants of FTP (e.g. Parallel FTP, called PFTP, in HPSS). The TRM’s
function is to accept requests for file transfers from clients, queue such requests in case
the MSS is busy or temporarily down, and apply a policy on the use of the MSS
resources. As in the case of a DRM, the policy may restrict the number of simultaneous
transfer requests by each client, or may give preferential access to clients based on their
assigned priority.

A Hierarchical Storage Manager (HRM) is a TRM that has a staging disk cache for its
use. Thus, it can be viewed as a combination of a DRM and a TRM. It can use the disk
cache for pre-staging files for clients, and for sharing files between clients. This
functionality can be very useful in a data grid, since a request from a client may be for
many files. Even if the client can only process one file at a time, the HRM can use its
cache to pre-stage the next files. Furthermore, the transfer of large files on a shared wide
area network may be sufficiently slow, that while a file is being transferred, another can
be staged from tape. Because robotic tape systems are mechanical in nature, they have a
latency of mounting a tape and seeking to the location of a file. Pre-staging can help
mask this latency. Similar to the file sharing on a DRM, the staging disk in an HRM can
be used for file sharing. The goal is to minimize staging files from the robotic tape
system. The HRM design is based on experience in a previous project reported in [2].

The concept of an SRM can be generalized to the management of multiple storage
resources at a site. In such cases, the site SRM may use “site-file-names” (directory path

211

+ file names) which do not reflect the physical location and file names. This gives the
site the flexibility to move files around from one storage device to another without the
site-file-names changing. When a client accesses a file using a site-file-name, it may be
given in response the physical location and file name. The client can then use the
physical file name to execute a file transfer.

In general, it is best if SRMs are shared by a community of users that are likely to access
the same files. They can be designed to monitor file access history and maximize sharing
of files by keeping the most popular files in the disk cache longer.

2. The role of SRMs in a Data Grid

Suppose that a client runs an analysis program at some site and wishes to get data stored
in files located in various sites on the grid. First, the client must have some way of
determining which files it needs to access. Checking a file catalog, using some index, or
using a database system containing information about the files can accomplish this step.
We refer to this step as “request interpretation”. The information used in this step is
often referred to as a “metadata catalog”. The result of this step is a set of logical file
names that need to be accessed. The second step is to find out for each logical file where
it physically resides or replicated. Note that a single logical file can be replicated in
multiple sites. Files can be either pre-replicated in multiple sites based on expected use
by a system administrator or replicated dynamically because they were accessed by
clients at these sites. In a grid environment, the information on the locations of replicated
files exists in a “replica catalog”, a catalog that maps a single logical file name to
multiple site-specific files. The site-specific file name includes the name a machine and
possibly port at the site, the directory path on that system, and the file name.

In many grid environments today, the burden for the above work is being thrust on the
clients. Therefore, it is now recognized that such tasks can be delegated to middleware
components to provide these services. A “request manager” is the term used to refer to
such services. The request manager performs “request planning” based on some strategy,
and then a “request execution” of the plan. This terminology is used by several grid
projects, notably PPDG [3], GriPhyN [4], and ESG [5]. There are three options to
consider for request planning: either move the client’s program to the site that has the
file, move the file to the client’s site, or move both the program and the data to another
site for processing. All three possibilities are valid, and much of the middleware
development addresses this issue. In all these cases, SRMs play an important role. In the
case that the program moves to the site where the file exists, it is necessary to “pin” the
file in that site; that is, to request that the file remains in that site, so that when the
program is executed the file is found in the cache. When the program completes, the file
can be “released”. In the case that the file needs to be transferred from a source site to
target site (either to the client’s site, or to another site), it is necessary to “pin” the file in
the source site, to reserve the space in the target site, and maintain this state till the
transfer to the target site is complete. Then the “pin” can be released. Here, the SRM at

212

the source site has the role of managing the “pinning”, and the SRM at the target site has
the role of allocating space (i.e. making space by removing other files if necessary), and
reserving the space till the transfer completes. SRMs need to deal also with various
failures, so that space reservations do not persist forever, and “pins” do not persist in case
that a “release” is not performed. The concept of “pinning a file” is central to SRMs and
will be discussed further later in this document.

In a recent paper [6], the authors describe 5 layers needed to support grid applications:
fabric, connectivity, resource, collective, and application layers. The purpose of this
layered approach is that services in each layer can rely on services in layers below it. The
fabric layer consists of computational resources, storage resources, network resources,
catalogs, code repositories, etc. The connectivity layer consists of communication,
authentication, delegation, etc. The resource layer consists of components (and
protocols) for managing various resources: computing, storage, network, catalog, inquiry,
etc. We see SRMs as belonging to the “resource layer”. The collective layer consists of
services such as replica catalog, replica selection, request planning, and request
execution. Request management is a generic term that uses any of the services in that
layer, as well as services below it. The application layer consists of application specific
services. The “request interpretation” we mentioned above belongs to this layer, since
finding which logical files are needed by an application is specific to that application.

3. A practical use case: an analysis scenario

We describe below an analysis scenario where the computation is performed at the
client’s site, and the needed files are in other sites on the grid. This is a common special
case of grid resource usage in many scientific communities. The schematic diagram of
this analysis scenario is shown in Figure 1.

As shown in Figure 1, at the client’s site there may be multiple clients sharing a local disk
cache. Each of the clients issues a logical request, typically consisting of a logical
predicate condition for what they wish to analyze. A typical example of such a request in
the high-energy physics domain (where atomic particles are accelerated and made to
collide at high speeds) might be: “find all the collisions (called “events”) that have an
energy more that 50 GEV, and produced at least 1000 particles”. A similar request for
climate model analysis may be “get all temperatures and wind velocity for summer
months in the Pacific Ocean region for the last ten years”. These requests may be
produced by a graphical user interface or composed by the client using some query
language. The Request Interpreter is a component that accepts the logical query and
produces a set of logical file names that contain the desired data. A Request Planner may
check with a Replica Catalog and other network services such as the “network weather
service” (which provides an estimate of current network availability) to determine the
replica site from which to get each file. The Request Executer then executes this plan.
An example of a request executer, called DAGMAN (for Directed-Acyclic-Graph
Manager) was recently developed by the Condor project [7].

213

The request executer could communicate with various SRMs on the grid, requesting
space allocation and file pinning, and making requests for file transfers. However, we
have decided to delegate the task of making requests for file transfers to the SRMs.

Figure 1. A schematic diagram of an analysis scenario

Specifically, if a request for a set of files is made to an SRM, it is its responsibility to
dynamically allocate space for the files, to negotiate with remote SRMs the pinning of
files at the remote site, to invoke file transfer services to get the files from other sites and
to release the files after they are used. By making this fundamental design choice, we not
only simplify the request executer’s task, but also permit clients to communicate directly
with SRMs making multi-file requests. The ability for clients to request files directly
from an SRM was a basic requirement that guided our design since, in general, one
cannot assume the existence of request managers. Furthermore, clients should be able to
make direct requests to SRMs if they so choose. A secondary advantage of this design

tape systemtape system

HRMHRM

Request
Executer
Request
Executer

DRMDRM

Disk
Cache
Disk

Cache

property-file
index

Replica
catalog
Replica
catalog

Network
Weather
Service

Network
Weather
Service

logical
query

pinning & file
transfer requests

network

DRMDRM

Disk
Cache
Disk

Cache

clientclientclientclient ...

Request
Interpreter
Request

Interpreter

request
planning
request

planning

logical files

site-specific
files

Client’s site

...

Disk
Cache
Disk

Cache

site-specific
files requests

214

choice is that it facilitates file sharing by the SRMs. Since clients can make multi-file
requests to the SRM, it can choose to serve files to clients in the order that maximizes file
sharing, thus minimizing repeated file transfers over the network.

For the analysis scenario shown in Figure 1, where all the files have to be brought to the
local disk cache, the request executer makes its file requests to the local DRM. The local
DRM checks if the file is already in its cache. If it is in the cache, it pins the file. If it is
not, it communicates with other SRMs to get the files.

We have implemented several versions of DRMs as well as an HRM that interfaces to the
HPSS mass storage system. The HRM is implemented as a combination of a TRM that
deals with reading/writing files from/to HPSS, and a DRM for managing its disk cache.
Both the DRM and the TRM are capable of queuing requests when the storage systems
they interface to are busy. For example, a TRM interfacing with HPSS may be limited to
perform only a few staging request concurrently, but it may be asked to stage hundreds of
files. These requests are then queued, and performed as fast as HPSS will perform. The
SRMs use grid-enabled secure file transfer services provided by the Globus project [8],
called GridFTP. These DRM and HRM components are in the process of being used by
one of the experiments of the Particle Physics Data Grid (PPDG) [3], and the Earth
Science Grid (ESG) [5] to perform grid file replication functions. The HRM was also
used in a demo for SuperComputing 2000 as part of an infrastructure to get files from
multiple locations for an Earth Science Grid application (ESG). This was described in a
recent paper [9]. We are now evaluating several “cache replacement policies” to be used
by DRMs, by both conducting simulations and setting up real testbeds.

4. The implementation of the analysis scenario

The analysis scenario described in Figure 1 was implemented as part of a demo during
the Supercomputing 2001 conference. The application used in the demo was high-energy
physics (HEP). Figure 2 shows the actual setup of the demo. From a client’s point of
view the system accepts a logical query request, and takes care of all the details of
figuring out what files should be transferred, and where to get them from. The client can
observe in a graphical display the progress of file transfers over time. Figure 3 shows
the progress of transfer of each file managed by the client’s DRM. Partially filled bars
represent transfer in progress. When a file that arrives is processed and released by the
client, it may be removed automatically by the DRM if it needs to make space for
additional files.

In order to illustrate the usefulness of SRMs, we describe next in some detail the steps of
processing a logical query in a grid environment. In figure 2, the Bit-Map index is a
specialized index used as the “request interpreter”, which was developed as part of
another project [10]. It gets as input a logical request made of logical conditions over
range predicates. An example of such a request in this HEP application is to find all files
that contain collisions (or “events”) for which the following condition holds:

215

((0.1 < AVpT < 0.2) ^ (10 < Np < 20)) v (N > 6000),

where AvpT is the “average momentum”, Np is “the number of pions” produced in this
collision, and N is the “total number of particles produced in this collision”. The result of
the Bit-Map index is a set of logical file names, such as:

{star.simul.00.11.16.tracks.156,…, star.simul.00.11.16.tracks.978},

Figure 2. A setup for processing logical analysis requests over the grid

where “star” is the name of the experiment at Brookhaven National Laboratory, “simul”
means simulation data, “00.11.16” is the date the data was generated, “tracks” refers to
the type of data in the file, and the number is the file ID. This set of logical file names is
given to the next component, the Request Manager.

The Request Manager (which consists of both a Request Planning and Request Execution
components) is a component that chooses the site where to get each file, and then
oversees the execution of the request. Given that a file may be replicated in multiple
locations, it chooses the most appropriate location. Each file is assigned a “site file
name” in the form of a URL, such as:

gsiftp://dg0n1.mcs.anl.gov/homes/sim/gsiftp/star.simul.00.11.16.tracks.156,

where “gsiftp” is the protocol for transferring the file, “dg0n1.mcs.anl.gov” is the
machine name, “homes/sim/gsiftp” is the directory path, and

DRM

Disk
Cache
Disk
Cache

Disk
Cache
Disk
Cache

Disk
Cache
Disk
Cache

Disk
Cache
Disk
Cache

BerkeleyBerkeleyChicago Livermore

HRMGridFTPGridFTP GridFTPFTP

Disk
Cache
Disk
Cache

BIT-MAP
Index

Request
Manager

File Transfer
Monitoring

DRM GridFTP

Denver

client

server server server server

Logical Request

Data Path

Control path

Legend:

216

“star.simul.00.11.16.tracks.156” is the file name.

Similarly, if the site that has the file is managed by an SRM, the protocol used will say
“hrm” or “drm”. For example, for accessing the same file out of an HPSS tape system,
the URL used is:

hrm://dm.lbl.gov:4000/home/dm/srm/data1/star.simul.00.11.16.tracks.156,

where “dm.lbl.gov:4000” is the name of the machine that has HRM running on it, and the
port used by HRM, “home/dm/srm/data1” is the directory on the HPSS system where the
file resides, and “star.simul.00.11.16.tracks.156” is the file name.

Note that files can reside on systems that may or may not have an SRM managing the
storage system. We set up the demo to illustrate that an SRM can work with systems
managed by other SRMs, or systems that have some grid middleware (such as GridFTP),
or even systems that have no middleware software at all (using only FTP to transfer
files). In the demo, we set up four types of nodes: one with a DRM managing the storage
system (at LBNL), one with an HRM managing access to an HPSS system (at NERSC-
LBNL), one that has no SRM but has GridFTP available on it (at ANL), and one that has
only FTP available on it (at LLNL).

217

Figure 3. Display of the dynamic progress of file transfers

Once the Request Manager has assembled the set of URLs for the files needed, it invokes
the local DRM (at the Supercomputing Conference floor at Denver). The local DRM
then checks for each file if it is already in cache, and if the file is not found it contacts the
site that has it, requesting pinning of files, and invoking the appropriate file transfer
service (GridFTP or FTP in this demo). Once a file is transferred, it sends a “release of
file” notice to the source site.

The SRMs are multi-threaded components that can support simultaneous file transfer
requests from multiple clients. Thus, given a request for multiple files, the client’s DRM
will initiate the coordination of space reservation, pinning of files, and multiple file
transfer requests to multiple sites. The number of such concurrent processing of file
transfer requests is a policy decision. Since multiple clients may share a local DRM, the

218

DRM may have a policy to restrict the amount of space and the number of files that a
client can hold simultaneously.

The display of file transfers in Figure 3 was designed to show dynamic progress. The
local disk cache is checked every 10 seconds (a parameterized choice) for the size of files
being transferred, and the display is updated. The horizontal bar below file progress
display shows the total bytes transferred as a fraction of the total bytes requested.
Moving the curser over any of the file bars provides information of the source location,
size, and transfer rate. This is shown in the lower section of the display. Finally, there is
a “message section” at the bottom to inform the client of events as they occur, including
failures to access files and the reasons for that, such as “system down”.

The above scenario was limited to cases where all the files are moved to the client’s
location. The generalization of this scenario is that the request planner generates a plan
where the execution of the analysis can be partitioned to run on multiple sites (perhaps
the sites where the data reside to minimize file transfer traffic). In this general scenario,
both data and programs can move to the locations best suited to execute a request in the
most efficient manner possible. The general scenario also includes moving the results of
computations to the client, as well as storing results in storage systems and archives on
the grid. Thus, in general, SRMs can be invoked at multiple locations by a single client
to satisfy the request plan.

5. Advantages of using SRMs

As can be deduced from the discussion above, the main advantage of an SRM is that it
provides smooth synchronization between shared resources by pinning files, releasing
files, and allocating space dynamically on an “as-needed” basis. A reasonable question is
why use SRMs if it is possible to use GridFTP and FTP directly as was done in the above
demo. We recall that SRMs perform two main functions: dynamic space allocation and
dynamic file pinning. Indeed, if space is pre-allocated, and the files are “permanently”
locked in the source site there is no need for SRMs. However, in a grid environment
where resources need to be reused dynamically, SRMs are essential. SRMs perform the
management of quotas, the queuing of requests when resources are tight or if the clients
exceed their quota, the freeing of space of files allocated but not released by clients
(similar to “garbage collection”), and providing the management of buffers for pre-
staging from mass storage systems. Pre-staging and buffering are important because the
network bandwidth available to a client may vary in an unpredictable fashion.

A second advantage of using SRMs is that they can eliminate unnecessary burden from
the client. First, if the storage system is busy, SRMs can queue requests, rather than
refuse a request. Instead of the client trying over and over again, till the request is
accepted, an SRM can queue the request, and provide the client with a time estimate
based on the length of the queue. This is especially useful when the latency is large such

219

as for reading a file from tape. If the wait is too long, the client can choose to access the
file from another site, or wait for its turn. Similarly, a shared disk resource can be
temporarily full, waiting for clients to finish processing files, and therefore queuing
requests is a better alternative than simply refusing the request.

A third advantage to the clients is that SRMs can insulate them from storage systems
failures. This is an important capability that is especially useful for HRMs since MSSs
are complex systems that fail from time to time, and may become temporarily
unavailable. For long lasting jobs accessing many files, which are typical of scientific
applications, it is prohibitive to abort and restart a job. Typically, the burden of dealing
with an MSS’s temporary failure falls on the client. Instead, an HRM can insulate clients
from such failures, by monitoring the transfer to the HRM’s disk, and if a failure occurs,
the HRM can wait for the MSS to recover, and re-stage the file. All that the client
perceives is a slower response. Experience with this capability was shown to be quite
useful in real situations [2].

A fourth advantage is that SRMs can transparently deal with network failures. SRMs can
monitor file transfers, and if failures occur, re-try the request. They can provide clients
the information of such failures, so that clients can find other alternatives, such as getting
the file from its original archive if a transfer from a replication site failed. Recently, there
is an interest of managing the inherent unreliability of the network as part of an extended
middleware file transfer service, called “Reliable File Transfer” (RFT). It is intended as a
service layer on top of GridFTP that will try to re-transfer files in case of temporary
failures of the network, will queue such requests, and will provide status of the requests.
When such services are available, SRMs can take advantage of them. Otherwise, as is
the case for systems that have no grid middleware software (e.g. only FTP), SRMs need
to protect the clients from unreliable network behavior.

A fifth advantage of SRMs is that they can enhance the efficiency of the grid, eliminating
unnecessary file transfers by sharing files. As mentioned above, it is typical of scientific
investigations that multiple clients at the same site use overlapping sets of files. This
presents an opportunity for the SRM at that site to choose to keep the most popular files
in its disk cache longer, and providing clients with files that are already in the disk cache
first. Managing this behavior is referred to as a “replacement policy”, that is deciding
dynamically which file to replace when space is needed. This problem is akin to
“caching algorithms”, which have been studied extensively in computer systems and web
caching. However, unlike caching from disk to main memory, the replacement cost in
the grid can be quite high, as files have to be replaced from remote locations and/or from
tertiary storage. Deploying efficient replacement policies by the SRMs can lead to
significant reductions in repeated file transfers over the grid.

Finally, one of the most important advantages of using SRMs is that they can provide a
“streaming model” to the client. That is, they provide a stream of files to the client
programs, rather than all the files at once. This is especially important for large

220

computing tasks, such as processing hundreds, or even thousands of files. Typically, the
client does not have the space for the hundreds of files to be brought in at once. When
making such a request from an SRM, the SRM can provide the client with a few files at a
time, streaming of files as they are used and released. This is managed by the SRM
enforcing a quota per client, either by the amount of space allocated and/or by the number
of files allocated. As soon as files are used by the client and released, the SRM brings in
the next files for processing in a streaming fashion. The advantage to this “streaming
model” is that clients can set up a long running task, and have the SRM manage the
streaming of files, the pre-staging of files, the dynamic allocation of space, and the
transferring of files in the most efficient way possible.

6. “Pinning” and “two-phase pinning”

The concept of pinning is similar to locking. However, while locking is associated with
the content of a file to coordinate reading and writing, pinning is associated with the
location of the file to insure that a file stays in that location. Unlike a lock, which has to
be released, a "pin" is temporary, in that it has a time-out period associated with it, and
the "pin" is automatically released at the end of that time-out period. The action of
“pinning a file” results in a “soft guarantee” that the file will stay in a disk cache for a
pre-specified length of time. The length of the “pinning time” is a policy determined by
the disk cache manager. Pinning provides a way to share files that are not permanently
assigned to a location, such as replicated files. This permits the dynamic management
and coordination of shared disk caches on the grid. Since we cannot count on pins to be
released, we use the pinning time-out as a way to avoid pinning of files forever.

Two-phase pinning is akin to the well known “two-phase locking” technique used
extensively in database systems. While two-phase locking is used very successfully to
synchronize writing of files and to avoid deadlocks, two-phase pinning is especially
useful to synchronize requests for multiple files concurrently; that is, if the client needs
several files at the same time, it can first attempt to incrementally pin these files, and only
then execute the transfers for all files, then releasing them as soon as each is transferred.
We note, that even if file replicas are read-only, a deadlock (or pin-lock) as a result of
pinned files can occur if we allow requests for multiple files concurrently. However, if
we assume that file requests are asynchronous and that time-outs to release files are
enforced, pin-locks are eventually resolved because pinned files are released after they
time-out. Nevertheless, two-phase pinning is a useful technique to avoid system
thrashing by repeatedly pinning and pre-emptying pins. It requires coordination between
the SRMs.

7. The design of “Read” and “Write” functionality of SRMs

When a request to read a file is made to an SRM, the SRM may already have the file in
its cache. In this case it pins the file and returns the location of the file in its cache. The
client can then read the file directly from the disk cache (if it has access permission), or

221

can copy or transfer the file into its local disk. In either case, the SRM will be expected
to pin the file in cache for the client for a period of time. A well-behaved client will be
expected to “release” the file when it is done with it. This case applies to both DRMs and
HRMs.

If the file is not in the disk cache, the SRM will be expected to get the file from its source
location. For a DRM this means getting the file from some remote location. For an
HRM, this means getting the file from the MSS. This capability simplifies the tasks that
the client has to perform. Rather than return to the client with “file not found”, the SRM
provides the service of getting the file from its source location. Since getting a file from
a remote location or a tape system may take a relatively long time, it should be possible
for the client to make a non-blocking request. To accommodate this possibility the SRMs
provide a callback function that notifies the client when a requested file arrives in its disk
cache and the location of that file. In case that the client cannot be called back, SRMs
also provide a “status” function call that the client can use to find out when the file
arrives. The status function can return estimates on the file arrival time if the file has not
arrived yet.

HRMs can also maintain a queue for scheduling the file staging from tape to disk by the
MSS. This is especially needed if the MSS is temporarily busy. When a request to stage
a file is made, the HRM checks its queue. If the HRM’s queue is empty, it schedules its
staging immediately. The HRM can take advantage of its queue to stage files in an order
optimized for the MSS. In particular, it can schedule the order of file staging according
to the tape ID to minimize tape mounts and dismounts, as described in [2]. Like a DRM,
the HRM needs to notify the client that the file was staged by issuing a callback, or the
client can find that out by using “status”.

A request to “write” a file requires a different functionality. In the case of a DRM, if the
file size is provided, then that space is allocated, and the client can write the file to it. If
the file size is not provided, a large default size is assumed, and the available space is
adjusted after the file is written. In the case of an HRM, the file is first written to its disk
cache in exactly the same way as the DRM description above. The HRM then notifies
the client that the file has arrived to its disk using a callback, then it schedules it to be
archived to tape by the MSS. After the file is archived by the MSS, the SRM notifies the
client again using a callback. Thus, the HRM’s disk cache is serving as a temporary
buffer for files being written to tape. The advantage of this functionality by HRM is that
writing a file to a remote MSS can be performed in two stages: first transferring the file
to the HRMs disk cache as fast as the network permits, and then archiving the file to tape
as a background task. In this way the HRM can eliminate the burden from the client to
deal with a busy MSS as well as dealing with temporary failures of the MSS system.

One of the practical implementation problems that SRMs have to deal with is an incorrect
or missing file size. In both cases of getting or putting a file into the SRM space, the
SRM needs to allocate space before the transfer of the file into its disk cache. If the file

222

size provided (or assigned by default) is smaller than the actual file size, then this can
cause various failures, such as writing over other files, or overflowing the total space that
the SRM manages. There are various methods of dealing with this problem (such as
interrupting the transfer or permitting incremental growth of the allocated space), but all
require the dynamic monitoring of the file transfers, and the ability to terminate the
transfer process if necessary. Since SRMs cannot terminate the transfer process initiated
by the client (in the case that it puts a file into the SRM’s disk cache), this problem
presents a special challenge. The solution to this problem usually requires modifications
to the file transfer server program.

SRMs can also be used to coordinate a third party file movement. Essentially, an SRM in
site Y can be asked to “pull” a file form site X. This request can be made by a client in a
third location. The SRMs in the two sites X and Y then coordinate space allocation, file
pinning, and file release. The actual transfer of the file is a regular two-way file transfer
from X to Y. The usefulness of this functionality is for clients that produce files, store
then temporarily in some location X, and then request their movement to an archive in
site Y. The inverse functionality can also be provided, where the SRM at site X is asked
to “push” the file to site Y.

8. Conclusion

We discussed in this paper the concept of Storage Resource Managers (SRMs), and
argued that they have an important role in streamlining grid functionality and making it
possible for storage resources to be managed dynamically. While static management of
resources is possible, it requires continuous human intervention to determine where and
when file replicas should reside. SRMs make it possible to manage the grid storage
resources based on the actual access patterns. In addition, SRMs can be used to impose
local policies as to who can use the resources and how to allocated the resources to the
grid clients. We also introduced the concept of "pinning" as the mechanism of requesting
that files stay in the storage resource until a file transfer or a computation takes place.
Pinning allows the operation of the coordinated transfer of multiple files to be performed
as a "2-phase pinning" process: pin the files, transfer, and release pins. We have
developed several versions of prototype SRMs and used them in test cases as part of the
Particle Physics Data Grid (PPDG) and Earth Science Data Grid (ESG) projects. A
prototype of an HRM was also developed at Fermi National Accelerator Laboratory
which interfaces to their Enstore MSS. In addition, efforts are now underway to
coordinate the SRM functionality across several projects, including the development of
an HRM at Thomas Jefferson National Accelerator Facility to interface to their JASMine
MSS, and the European Data Grid to interface to their CASTOR MSS. The emerging
concepts and interfaces seem to nicely complement other grid middleware services being
developed by various grid projects, such as providing efficient and reliable file transfer,
replica catalogs, and allocation of compute resources.

223

Acknowledgements

We would like to thanks our colleagues John Wu, and Vijaya Natarajan, who provided
the bit-map index and the monitoring tool display program for the SC 2001 demo. We
also acknowledge the useful interactions with people involved in the PPDG and ESG
projects, as well as the European Data Grid project. This work was supported by the
Office of Energy Research, Office of Computational and Technology Research, Division
of Mathematical, Information, and Computational Sciences, of the U.S. Department of
Energy under Contract No. DE-AC03-76SF00098.

References

[1] The Grid: Blueprint for a New Computing Infrastructure, Edited by Ian Foster and
Carl Kesselman, Morgan Kaufmann Publishers, July 1998.

[2] Access Coordination of Tertiary Storage for High Energy Physics Application, L. M.
Bernardo, A. Shoshani, A. Sim, H. Nordberg (MSS 2000).

[3] Particle Physics Data Grid (PPDG), http://www.ppdg.net/

[4] The Grid Physics Network (GriPhyN) http://www.griphyn.org

[5] Earth Science Grid (ESG), http://www.earthsystemgrid.org

[6] Ian Foster, Carl Kesselman, Steven Tuecke, The Anatomy of the Grid: Enabling
Scalable Virtual Organization, The International Journal of High Performance
Computing Applications, 15(3), (2001) 200-222.

[7] DAGMAN, part of the Condor project,
 http://www.cs.wisc.edu/condor/manual/v6.2/2_10Inter_job_Dependencies.html

[8] The Globus Project, http://www.globus.org

[9] B. Allcock, A. Chervenak, E. Deelman, R. Drach, I. Foster, C. Kesselman, J. Lee, V.
Nefedova, A. Sim, A. Shoshani, D. Williams, High-Performance Remote Access to
Climate Simulation Data: A Challenge Problem for Data Grid Technologies, Proceedings
of Supercomputing Conference (2001).

[10] A. Shoshani, L. M. Bernardo, H. Nordberg, D. Rotem, and A. Sim,
Multidimensional Indexing and Query Coordination for Tertiary Storage Management,
Statistical and Scientific Database Management Conference (1999) 214-225.

 225

Storage Area Networks and the High Performance Storage System

Harry Hulen and Otis Graf
IBM Global Services

1810 Space Park Drive
Houston TX 77058

Hulen: +1-281-488-2473, hulen@us.ibm.com
Graf: +1-281-335-4061, ofgraf@us.ibm.com

Keith Fitzgerald and Richard W. Watson
Lawrence Livermore National Laboratory

7000 East Ave.
Livermore CA 94550-9234

Fitzgerald: +1-925-422-6616, kfitz@llnl.gov
Watson: +1-925-422-9216, dwatson@llnl.gov

Abstract
The High Performance Storage System (HPSS) is a mature Hierarchical Storage
Management (HSM) system that was developed around a network-centered architecture,
with client access to storage provided through third-party controls. Because of this
design, HPSS is able to leverage today's Storage Area Network (SAN) infrastructures to
provide cost effective, large-scale storage systems and high performance global file
access for clients. Key attributes of SAN file systems are found in HPSS today, and more
complete SAN file system capabilities are being added. This paper traces the HPSS
storage network architecture from the original implementation using HIPPI and IPI-3
technology, through today’s local area network (LAN) capabilities, and to SAN file
system capabilities now in development. At each stage, HPSS capabilities are compared
with capabilities generally accepted today as characteristic of storage area networks and
SAN file systems.

1. Introduction
Storage Area Network (SAN) technology has a bright future as measured by its growing
market acceptance. Web information source allSAN.com [10] reports that:

Within the mainframe arena, SANs already represent upwards of 25% of data
center traffic. Outside of the mainframe area, SANs are expected to account for
25% of external disk storage and approximately 50% of multi-user tape storage by
2003

We believe that SAN technology will only reach its full potential when it can be used to
provide secure sharing of data between heterogeneous client systems. To realize this
potential requires appropriate storage system software and hardware architectures. One
use for such a capability is a SAN-based global file system. A generic host-based file

 226

system provides capabilities such as a naming mechanism, data location management,
and access control. A global file system extends this capability to multiple independent
operating systems by using specialized protocols, locking mechanisms, security
mechanisms, and servers to provide device access. A SAN-based global file system is
distinguished from other global file systems by the characteristic that client computers
access storage devices directly, without moving data through a storage server.

The High Performance Storage System design and implementation are focused on
hierarchical and archival storage services and therefore are not intended for use as a
general-purpose file system. HPSS is nevertheless a file system, and specifically, a global
file system. While any client applications (such as a physics code) can access HPSS
devices with normal Unix-like calls to the HPSS client API library, in normal operation
these applications are data transfer applications that transfer data between HPSS files and
the local file system. HPSS has a network-centered architecture that separates data
movement and control functions and offers a secure, global file space with characteristics
normally associated with both LAN-based and SAN-based architectures.

Figure 1 illustrates a typical deployment of HPSS. Note in particular the separation of
control and data transfer networks (which may be physical or logical). This inherent
separation of control and data helps enable HPSS to present a secure, scalable, global file
system image to its users and leads naturally to full global SAN file system capabilities in
the near future. The terms “Mover” and “Core Server” in Figure 1 are fairly descriptive
of their function, but they are more fully described in Section 5.

This paper tracks the development of concepts and implementation for the separation of
control and data functions in storage systems and the importance of these concepts for
SAN file systems. These concepts are rooted in work that began over two decades ago [9]
and prototyped a decade ago in the National Storage Laboratory (NSL) [3]. Lessons
learned at the NSL led to the architecture of the High Performance Storage System
(HPSS), which today supports a variety of high-speed data networks [4, 5]. HPSS is a
collaborative development whose primary partners are IBM and the U.S. Department of
Energy. This collaboration has been in existence for a decade, and HPSS development is
ongoing. We discuss simple extensions to HPSS to exploit today’s SAN technology
within large-scale HSM storage systems. We conclude with a section on lessons learned.

2. SAN Terminology
Several definitions of a Storage Area Network exist as related to common, shared
repositories of data. The Storage Networking Industry Association (SNIA) online
dictionary offers the following definition of Storage Area Network [1]:

1. A network whose primary purpose is the transfer of data between computer
systems and storage elements and among storage elements. Abbreviated SAN.
SAN consists of a communication infrastructure, which provides physical
connections, and a management layer, which organizes the connections, storage
elements, and computer systems so that data transfer is secure and robust. The

 227

term SAN is usually (but not necessarily) identified with block I/O services rather
than file access services.

2. A storage system consisting of storage elements, storage devices, computer
systems, and/or appliances, plus all control software, communicating over a
network.

HPSS
Metadata

HPSS Clients

HPSS
Core

Server

External Control Network

Internal Control Network

HPSS Mover HPSS Mover

SANSCSI
Disk &
Tape

High Speed
TCP/IP Network
dedicated to data

transfers

Other clients
and Networks

Supercomputer SMP Computer Workstation Cluster

HPSS Mover HPSS Mover

Figure 1: HPSS storage systems support a network centered architecture

Our interest is in large, high performance storage systems where 100s – 1000s of
terabytes of data can be shared among client computers. The focus of SANs in our paper
is from Bancroft et al [2]:

The implementation [of a SAN] permits true data and/or file sharing among
heterogeneous client computers. This differentiates [SAN file systems] from SAN
systems that permit merely physical device sharing with data partitioned (zoned)
into separate file systems. … The software orchestrating the architecture is what
unites the components and determines exactly how these elements behave as a
system.

 228

The same paper defines the notion of a SAN file system. Figure 2 illustrates the control
and data flow of a such a generic SAN file system.

The optimum vision is a single file system managing and granting access to data
in the shared storage with high bandwidth Fibre Channel links [today there are
other network technologies] facilitating transfers to and from storage. … The
objective … is to eliminate file servers between clients and storage with minimum
or no impact to the controlling applications. Control information is typically
separated from data traffic and in some architectures the two are isolated on
completely separate networks.

RAID RAID

Shared RAID

Meta
da

ta

M
et

ad
at

a

SAN Clients
Metadata
Controller
and Global
Namespace

Step 1. Client
requests read
access to file. Step 2. Access

request is
granted and
metadata is
passed to
requesting
client.

Bl
oc

k
D

at
a

Ac
ce

ss

Step 3. Data is
transferred
directly from
shared storage
to client.

Separately,
another SAN
client can access
the same file
with assurance
that sharing is
orderly and safe.

Control Network

SAN Fabric

Supercomputer SMP Computer Workstation

Figure 2: A file read operation illustrates the separation of data and
control in a typical SAN file system.

It will be shown in the following sections that HPSS current implementation incorporates
significant components of the SAN file system functionality described in the above
definition, and how additional SAN file system functionality will be added to HPSS.

 229

3. SAN Precursors
Although the term “SAN” is relatively new, the basic ideas of shared file systems have
been around since the early days of computing. Papers by Thornton [8] and Watson [9]
trace shared file concepts to the Octopus network at Lawrence Livermore National
Laboratory in the 1960s, the Network Systems Corporation Hyperchannel, and the IEEE
Mass Storage Reference Model in the late 1970s and early 1980s.

The foundation for HPSS can be traced to 1992 and the National Storage Laboratory
(NSL). The NSL was a joint government/industry collaboration investigating high
performance storage system architectures and concepts [3]. Work at the National Storage
Lab led to NSL-Unitree, a prototype hierarchical storage system incorporating a
distributed storage architecture that leveraged third-party data transfers almost a decade
in advance of today’s SAN deployments. A third-party data transfer is a data transfer
controlled by an agent. The agent controls the data transfer by communicating with both
the data source and the data sink in setting up the transfer. The agent does not participate
in the actual movement of the data.

MAXSTRAT Corporation, a partner in the National Storage Lab, built high-end HIPPI-
based RAID devices known as Gen4 and Gen5 arrays. These disk arrays were among the
highest performing RAID disk devices of their day. Using the IPI-3 protocol, NSL-
Unitree was able to achieve data rates of about 60 MB/s between a Cray C90 and
MAXSTRAT disks over a HIPPI network.

IPI-3 was the third release of the Intelligent Peripheral Interface, a standards-based I/O
interface that at the time was considered to be a high-end alternative to SCSI. Like SCSI,
IPI-3 could exist as a native physical level protocol, or it could be encapsulated and sent
over another general-purpose protocol such as HIPPI framing protocol. Disks were
available equipped with a native IPI interface. Both IPI and TCP/IP could coexist on a
HIPPI network through the use of HIPPI framing protocol.

The MAXSTRAT disk array was connected to a high performance computer via parallel
or serial HIPPI, which has a nominal data rate of 100 megabytes per second. Originally
designed as a point-to-point parallel interface, HIPPI evolved to be a switchable serial
interface using a fibre transmission medium. Through the use of HIPPI switches, the
Gen5 could be connected to multiple computers. By using encapsulated IPI, each
computer could communicate with any Gen5 disk array as though it were a local IPI-3
device. Today this would be analogous to sharing a Fibre Channel disk array using SCSI
over Fibre Channel, or more recently Gigabit Ethernet with SCSI over IP.

Significantly, the Gen4 and Gen5 implemented the third-party capabilities of the IPI-3
standard. With this capability, IPI-3 commands could be sent to a central server that
mediated the requests and redirected them to source and sink for third-party transfer to
bring order and preserve data integrity. The following description of the third-party
architecture from Chris Wood [6]:

 230

Third-party transfer architectures address the data "ownership" and access control
issues by consolidating all data ownership and file system knowledge in a
centralized server. Unlike NFS-style architectures, third-party transfer allows for
direct disk I/O access to the central data store by clients. This architecture
eliminates the burden of heavy inter-host lock manager and semaphore traffic and
presents a well understood, NFS-like application interface. User data flows at
local disk speeds (vs. network speeds) over dedicated high-speed disk channels
while control traffic flows over a separate control network. The goal is to deliver
data at optimal speeds with no interruptions for read/write commands and flow-
control handshaking.

Essentially, The NSL proved the basic concepts of what we would now call a SAN file
system. Figure 3 illustrates a file read operation in the NSL prototype. Note that Figure 3
is almost identical with Figure 2. Details of the protocol operation are given in [3].

NSL UniTree Clients
NSL

UniTree
Prototype
circa 1992

Step 1. Client
requests read
access to file.

IPI-3 Block Data Transfer

Step 3. Data is
transferred
directly from
shared
MAXSTRAT disk
array to client
using IPI-3 over
HIPPI network.

MAXSTRAT
Gen4 RAID

Secure Private
Control Network

Metadata

Step 2. Access
request is granted
and 3rd party IPI-3
command is passed
to MAXSTRAT
Gen4 disk array

SCSI Disks
and Tapes

HIPPI
Switch

Control and
Data Network

Supercomputer SMP Computer Workstation

Figure 3: The NSL Prototype provided 3rd party “LAN-less” data transfers.

The NSL prototype proved several points to the NSL collaboration:
1. It established that data transfers between a client and network attached disks could

give as good or better performance as native client disk.

 231

2. Third-party data transfer allowed the transformation of the NSL server to function as
a metadata engine that could effectively control data sharing among clients while
maintaining high data rates.

3. Security is aided by separating control and data flow to separate networks.
4. Hierarchical storage, with movement of data between disk and tape, could be

implemented in the shared disk environment.

4. Security Implications for SAN File Systems
Whenever data is shared among multiple clients, effective security mechanisms must be
provided. In the case of robust global storage systems, security has historically been
enforced by the file or storage server that effectively isolates clients from storage devices.
NFS v4, AFS, DFS, and HPSS are examples of global storage systems that offer
authenticated and authorized transfers between the client and storage servers. However
when you make storage devices directly accessible to client systems, as in today’s SANs,
you have in effect opened a “Pandora’s box” of security problems.

In today’s SAN environments, shared storage appears as directly accessible devices on
every client requiring access to the shared data. The level of protection for a shared SAN
device is therefore no stronger than it would be for a local device attached to the client.
This means that if any SAN client machine is compromised at the operating system root
level, all shared data has been compromised. In effect, all shared-storage clients need to
trust each other. SAN zoning limits visibility of devices to specified hosts and can be
used to protect data by limiting access. But in cases where the goal is to make data
globally accessible to many clients, security risks are incurred if any but the most trusted
clients are added.

The NSL developers recognized this issue and provided a reasonable level of security by
using a secure private control network connection between the storage servers and the
network attached storage devices (See Figure 3). The storage system controlled access to
all shared data. Clients did not have direct access to the storage devices because of the
nature of the IPI-3 third-party protocol. Access to a network connection was granted to
processes running on the storage clients on a per-transfer basis. The storage system used
the secure private network to communicate with the MAXSTRAT disks, acting as the
third-party agent facilitating all transfers between the storage clients and the network
attached peripherals. It would have been very difficult for a rogue client to compromise
the security of the NSL storage environment with this mechanism.

A similar level of security must be developed for use in a current SAN environment
before the true power of SAN file systems can be safely realized. Object based
“Network-Attached Secure Disks” [7] could solve this problem if they are accepted
within the storage marketplace.

5. The Development of HPSS
The HPSS collaboration [4, 5] took up the work of the National Storage Laboratory
collaboration in 1992 under a Cooperative Research and Development Agreement
(CRADA) between IBM and several U.S. Department of Energy Laboratories (Lawrence

 232

Livermore, Los Alamos, Oak Ridge, and Sandia). After reviewing the projected
requirements of next generation high performance HSM systems and all available
hierarchical storage systems then in existence, the collaboration concluded that it was
necessary to develop new software that would provide a highly scalable storage system,
anticipating the growth in data-intensive computing (100s – 1000s of terabytes and
Gigabyte/sec data transfer rate ranges) while also providing robust security for global file
access. As this was to be a collaborative development, there was need for open access to
source code among all collaboration members. The first production release of HPSS was
in 1995, with major releases since then at approximately one-year intervals. Development
is ongoing, with about 28 full time equivalent developers, including about 16 in the
Department of Energy labs. Ongoing development is discussed in later sections. There
are currently over 40 production HPSS sites worldwide in government, research, and
education.

The scalability requirement led to a network-centered architecture that allowed more
storage capacity and increased data rates by adding management and storage elements to
a scalable network. Like the earlier NSL prototype, HPSS was designed to accommodate
intelligent third-party devices based on the model of the MAXSTRAT Gen4 and Gen5
disk arrays [4]. It was assumed that more intelligent third-party devices would follow;
however, it was recognized that most of the storage devices that would be attached to
HPSS would be conventional disks, disk arrays, and tape libraries. To accommodate
conventional devices, the HPSS collaboration introduced the idea of a “Mover”. The
notion was to attach SCSI disks and tape drives to low-cost computers running a
lightweight HPSS Mover protocol. A data Mover and the disks and tapes attached to it
formed the equivalent of an intelligent third-party device. Thus the HPSS architecture
enabled both ordinary and intelligent devices and reasonably priced computers to work
together while preserving security and a global name space.

Figure 4 illustrates the network-centered data flow of HPSS for a file read operation.
Comparing this figure with the previous NSL illustration (Figure 3), one can see that the
Mover and the disks and tape drives attached to it take on the attributes of an intelligent
third-party device.

The HPSS Core Server presents the image of a file system to the user. Its main function is
to manage the client interface and the system’s metadata (e.g. data location and security
data). At the lower level involved with data transfer, the lightweight HPSS Mover code
works only with block I/O. Unlike conventional network-attached storage (NAS), HPSS
Movers transfer data over the network at a block level, not a file level, simulating the
low-level I/O of early intelligent third-party devices and today’s SAN-attached devices.
The Mover is strictly an intermediary to transfer logical blocks of data under control of
the HPSS Core Server. See references [3, 4, 5] for details.

Use of multiple Movers allow many concurrent data transfers to provide very high
aggregate data transfer rates. HPSS also supports data striping (parallel data transfers),
thereby providing very fast single file transfer rates [4].

 233

High Speed
TCP/IP Network
dedicated to data

transfers Metadata

HPSS
Core

Server

Internal Control Network

TC
P/IP Block D

ata Transfer

Step 3
Data is
transferred
directly from
HPSS Mover to
client using
HPSS virtual
block transfer
over TCP/IP.

Step 1
Client
requests
read access
to file.

Supercomputer SMP Computer Workstation Cluster

HPSS Clients External Control Network

HPSS Mover HPSS Mover

Step 2
Access request is
granted and 3rd

party read
command is
passed to Mover.

Mover and disks
or tape drives form

an intelligent 3rd

party device.

Figure 4: HPSS Movers create third-party capability using conventional devices.

HPSS, with its network-centered, third-party architecture is well suited to leverage SAN
technology. The next section explains how SAN technology is used with HPSS today,
and the sections that follow show enhancements will further exploit SAN technology.

6. Today’s SANs and HPSS
Today's SAN technology promises better management and sharing of storage devices
across HPSS Movers. SAN technology can simplify administration of large amounts of
storage and can lead to better system reliability.

HPSS LAN-based configurations (refer back to Figure 1) are capable of providing very
high bandwidths, both for individual data transfers and in the aggregate across concurrent
file transfers and can furthermore support parallel, striped data transfers across multiple
disks or tape drives. The current HPSS Mover architecture allows devices to be run at
data transfer rates equal to 85% to 95% of the best possible device data transfer rates
achievable at the block I/O level. Inexpensive network technologies such as Gigabit
Ethernet, together with more efficient TCP/IP protocol implementations assure that LAN-
centered technology is neither a performance bottleneck nor a cost issue for today’s
HPSS sites. Moore’s Law has made Mover hardware inexpensive for lower I/O rate
devices such as tapes but for high throughput disk environments (100s MB/s per Mover)
Movers are still relatively expensive. Thus, neither initial cost nor performance are sole
motivators for introducing SAN technology into HPSS in some environments. For those

 234

requiring Movers capable of highest I/O rates, cost may be a motivator. SAN capabilities
are important to the HPSS community because they will allow users of HPSS much more
flexibility to reconfigure disks and tape drives when needs change.

The ability to reconfigure is especially important in case of component failures, including
network, Mover, and device components. With SAN technology, disks and tape drives
can be quickly reallocated among Movers, allowing quick restoration of service. Going
one step further, SAN technology enables disks and tape drives to be connected to pairs
of HPSS Movers, allowing the use of fault-tolerant software such as IBM’s High
Availability Cluster Multi-Processing (HACMP). All of these capabilities are available
with today’s HPSS just as they are available with other storage software, because SAN
technology presents computers with the image of local disks or tape drives. Our goal is to
exploit SAN technology as the high performance network connecting both clients and
devices. This allows clients direct access to SAN devices, saving network store and
forwards and data copies. Above the SAN level of device sharing and reconfiguration,
HPSS adds the capabilities of a hierarchical, shared file system.

Having looked at how HPSS sites use SAN technology today to aid system
administration and recovery from component failures, we now show how SAN capability
will be exploited in future releases of HPSS.

7. SAN-enabled Movers and Clients
We have set a course to enable client applications to read and write data directly over a
SAN, bypassing the existing store and forward character of TCP/IP networks when used
with SCSI devices. In doing so, we will also enable HPSS to read and write data directly
over a SAN for internal purposes such as migration and staging. The changes create
“SAN-enabled Movers” and “SAN-enabled Clients.”

We are currently evaluating a prototype that is an extension of the IPI3 I/O redirection
mechanism for disk access described earlier in the paper. Devices are assigned to a single
Mover as is currently done in HPSS. In the case of I/O between a SAN-attached disk
device and a SAN-attached client, the SAN-enabled disk Mover redirects its I/O
descriptor (an internal HPSS data structure) to the client, which in turn can perform the
I/O operation directly with the SAN disk. The “client” in this case could be either a true
HPSS Client (i.e. a user) or another Mover such as a tape Mover. No data passes through
the disk Mover, as it is only used for the redirection control. Only a single disk Mover or
a small number of disk Movers would be required, reducing cost. This design is called
“I/O Redirect Movers.”

We are also studying a design that allows HPSS to dynamically map a device to the a
Mover for a data transfer. This design is called “Multiple Dynamic Movers.” Currently
devices are administratively assigned to specific Movers. With Multiple Dynamic Mover
capability, it will be possible to configure SAN-enabled Movers and Clients that are
equivalent to the I/O Redirect Mover capability in data transfer functionality and offer
dynamic device to Mover mapping, which may be useful for dynamic failure recovery

 235

and load balancing. In the case of Clients, this would be accomplished by combining a
SAN-Enabled Mover with a conventional Client API library.

We will have a prototype of SAN-enabled Movers and Clients running in an HPSS
testbed in the spring of 2002. Experience with that prototype and the other design and
requirements studies under way will lead to our final implementation choices. The
selection of the “I/O Redirect Mover” or the “Multiple Dynamic Mover” will be made by
mid year 2002 so as to deliver a SAN-enabled product in 2003. The discussion that
follows applies to either approach.

For most systems configured for SAN enablement, fewer Movers will be required. Data
transfer across a LAN is avoided. However, SAN enablement of Movers and Clients will
be optional, and existing LAN-based capabilities will be fully supported. Sites that elect
to use SAN-enabled Movers and Clients will benefit from fewer “hops” between HPSS-
managed disk and the user and between disk and tape. On the other hand, the stronger
inherent security for shared storage that is afforded by the current HPSS Mover and LAN
approaches will in general (independent of HPSS) motivate some sites to use SAN
enablement only for HPSS internal functions of migration and staging, while retaining
LAN-based client functions. This will be discussed in more detail in Section 10.

Now we look at the ways SAN-enabled Movers and Clients can be exploited. These ways
are (1) LAN-less and Server-less data movement for HSM stage and migrate and (2)
LAN-less data movement between clients and storage devices directly over the SAN.

8. LAN-less and Server-less Data Movement for HSM Stage and Migrate
The HSM stage/migrate function moves data between levels in the storage hierarchy,
usually consisting of disk and tape. In the current HPSS architecture, each storage device
is assigned to a single data Mover. Data that is being staged to disk or migrated to tape is
transferred between the respective Mover machines over a high-speed TCP/IP network.

SAN architecture is capable of making storage devices directly accessible to all Mover
platforms connected to the SAN. With SAN-enabled Mover approaches outlined above,
one Mover computer (which may run multiple Mover processes) will have the I/O
descriptors for both source and sink ends of the transfer. Thus it will have the capability
to migrate data from disk to tape or to stage data from tape to disk without moving data
across a LAN. Eliminating a LAN transfer should allow fewer Mover computers and
fewer LAN data connections. This is shown in Figure 5.

Going one step further, when devices and clients are directly attached to a SAN, the
potential exists for the actual data movement to take place without going through a
Mover by using the SCSI third-party copy command from a third-party agent. This
capability is used in some tape backup systems today, and the same capabilities can be
applied to hierarchical storage. Since the HPSS Mover software in Figure 5 has the
addresses of both the disk and tape drive (source and sink), it can be extended to provide
this third-party SCSI copy service or use another SAN agent specializing in this service.

 236

We expect to consider this Server-less data transfer capability in the near future and see it
as a logical extension to the LAN-less SAN enablement described above.

HPSS Mover HPSS Mover

TCPIP Data Network

Data movement
(stage/migrate)

between levels in the
storage hierarchies
occurs through the
SAN and shared

memory of a mover.

SAN-Enabled Movers share
access to all disk volumes

 and tape drives.

SAN

TCPIP Control Network

The LAN is not
used when

moving data files
between disk

and tape in the
HSM hierarchy.

Figure 5: LAN-less Stage/migration between disk and tape using SAN-enabled
Movers

9. LAN-less Data Movement between Clients and HPSS Storage Devices
The high performance user interfaces of HPSS are the Client API library, which is a
superset of the Unix standard I/O read and write services augmented for parallel I/O, and
Parallel FTP (PFTP), which is similarly a superset of Unix ftp. The Client API library,
has code to support the Mover protocol and communicates with HPSS Movers using
TCP/IP if the client and Mover are on different machines, or by an internal transfer
mechanism if they are in the same computer.

SAN-enabled HPSS Clients will be able to access SAN-attached HPSS disks directly,
and potentially also SAN-attached tapes. This can be done because the Client will be
passed an I/O descriptor that describes the I/O operation to be performed. This is shown
in Figure 6. The benefit of a SAN-enabled Client API library on a client machine must be
weighed against the security exposure. This is discussed in the next section.

10. Security Considerations for Access to Storage: SAN versus LAN
We will now revisit security issues. Our assumption is that with today’s generally
available Unix-based technologies, a person who acquires root access, whether with
authorization or not, can read and write any disk or tape that is configured as a local
device. This includes SAN-attached devices. This is a well-known vulnerability of SANs,
and it is the basic reason for zoning. The problem is that zoning and sharing data are
inherently at odds with each other. In an environment where access to a computer cannot

 237

be limited by physical means, then the information on shared devices is vulnerable to a
rogue user with root access on any SAN-attached machine zoned for access to the shared
data. (Zoning is a SAN capability that allows users to create multiple logical subsets of
devices within a physical SAN as mentioned earlier. Access to devices within that zone is
restricted to the members of the zone.) For this reason and until improved technology
such as secure object-based devices [7] are available, server-facilitated access is currently
the safest course for a file or storage system shared across computers.

SAN

Metadata

HPSS
Clients HPSS

Core
Server

External Control Network

Internal Control Network

Both Servers have
SAN-Enabled

Clients

Direct
Client-Disk
Transfer

Direct
Client-Tape

Transfer

San-Enabled
Mover

San-Enabled
Mover

Visualization
Server

Compute
Server

Figure 6: With SAN-enabled Movers and Clients, HPSS has LAN-less access to disk

and/or tape storage.

Most large computer centers contain computer systems that are not likely to be
compromised, usually because access is limited. For systems where access can be limited
and trust exists, then sharing files across computers using SAN devices may present an
acceptable level of risk.

Figure 7 shows appropriate use of current SAN and LAN capabilities for an example
limited-access computer system and for an example open-access computer system. The
configurations shown are typical of large IBM SP computers, large Linux clusters, and
similar large-scale distributed architectures. By “limited access” we mean a computer
system where access is physically controlled such that rogue users are very unlikely to
gain access to the I/O client nodes, while an “open” system would be less secure and the
I/O client nodes would be more vulnerable. For simplicity only the data paths are shown
in Figure 7. Control would typically be over a fast Ethernet.

 238

Each computer system in the example of Figure 7 has a local file system such as the IBM
General Parallel File System (GPFS). GPFS is the principal file system for the IBM SP
and is also used with Linux clusters. GPFS as configured here would provide access to
files across nodes within each computer system but not across computer systems.
Therefore GPFS data accessible to one system would be on disk zones not visible to the
other computer system. This is the classic use of SAN zoning to protect each computer
system’s local file system. Use of SAN zoning to allocate storage to HPSS and local file
systems is the heart of the administrative benefit of SANs.

Trusted systems
can have local
HPSS SAN-enabled
Movers

GPFS
provides
a local
file
system.

HPSS
Metadata

HPSS
Core

Server

SAN
Compute

Nodes
HPSS

SAN-Enabled
Clients

GPFS
Storage
Nodes

Compute
Nodes

GPFS
Storage
Nodes

HPSS Clients
(not SAN-Enabled)

Disk
Storage
System

Automatic
Tape

Library
controlled
by HPSS

HPSS
Movers

HPSS Control
NetworksHPSS

Movers and
Clients

S
p
e
e
d

S
w
i
t
c
h

H
i
g
h

S
p
e
e
d

S
w
i
t
c
h

H
i
g
h

Limited Access System
(Trusted applications and users)

Open Access System
(Un-trusted applications and users)

Trusted systems
can have local
HPSS SAN-Enabled
Clients

GPFS
provides
a local
file
system.

Zone 1

Zone 2

Zone 3

SAN administrative
tools can be used to
restrict access in the
disk storage pool:

Zone 1 : HPSS file space

Zone 2 : GPFS for Limited
Access cluster

Zone 3 : GPFS for Open
Access cluster

SAN administrative
tools can be used to
restrict access in the
disk storage pool:

Zone 1 :

Zone 2 :

Zone 3 :

High Speed TCP/IP
Network

dedicated to data transfers LAN-only access
to HPSS provides
better protection of
HPSS storage
volumes.

LAN-only access
to HPSS allows
better protection of
HPSS storage
volumes.

HPSS file space
and disk cache

GPFS for Limited
Access Cluster

GPFS for Open
Access Cluster

Figure 7: Example of where HPSS provides a global file system to both trusted and un-
trusted clients.

HPSS, on the other hand, is typically configured such that files are globally visible across
all HPSS client computers (although HPSS clients can be configured with limited access
to particular classes of HPSS files). HPSS files in our example are in zones that are
visible to all HPSS Client nodes, both in the Limited Access System cluster and in the
Open cluster. As a result, data transfers from HPSS to nodes in the Limited Access
System cluster will occur over the SAN and no external LAN is required for data transfer.
SAN terminology would be “LAN-less” or “LAN-free” transfer.

For a system with a reasonably small number of compute nodes in the cluster it would be
possible to put a SAN-enabled Client on each compute node, thereby eliminating the
need to transfer data across the backbone network of the cluster. However for a large
cluster or SP, this would require an equally large SAN switch. It would also open the

 239

HPSS data zones to the previously described vulnerability of SANs to rogue users with
root access to the compute nodes. This vulnerability is not a limitation of HPSS but is due
to the lack of security mechanisms to protect shared data in today’s SANs. It would
therefore be recommended that in most situations, dedicated nodes be used for the HPSS
Clients. At LLNL, for example, the normal practice is to use agents to transfer data
between HPSS and GPFS, which serves as the local file system. Only the agents are
enabled to use the HPSS Client API and PFTP. Residing on SP nodes dedicated to I/O,
these agents and the client API are protected from unauthorized access and hence the
associated SAN zones are protected from unauthorized use.

The Open Access System, which is the less trusted of the two systems, is configured to
access HPSS files only through the LAN, using conventional capabilities of the HPSS
Client without SAN enablement. This provides the maximum protection for HPSS data.

11. Lessons Learned
The HPSS collaboration and the earlier NSL collaboration have dealt with the problems
of scalable, network-centered storage for over a decade. Our charter is to provide storage
software for large, demanding applications such as those of the Department of Energy
labs that sponsor HPSS. Other large applications where HPSS has been deployed include
supercomputer centers, weather, high-energy physics, and defense. Our “lessons learned”
apply both to this high end of hierarchical storage and archiving and we believe to SAN
file systems generally. Our experience has led us to a blend of LAN-based and SAN-
based technologies with the overarching requirements of scalability, high data rates,
shared access to files, security, high availability, and manageability.

Based on our experience with HPSS and our forty plus installations we have found that:
• High data rates and scalability are supported by a network-centered architecture, but

not tied to either LAN or SAN.
• The lightweight HPSS Mover, which is based on a concept from the IEEE Mass

Storage Reference Model Version 5, is a useful tool for scalability and facilitates
simple evolution toward full support for SAN file system concepts.

• LAN-based and SAN-based technologies are complementary and can be mixed.
• Data rates are limited by the hardware configuration (including the network and the

choice and number of devices) and not by HPSS software.
• Due to the lack of an adequate SAN security mechanism, shared access to data is best

managed in a server-based environment for situations requiring protection from a
rogue users who might obtain root access.

• Manageability and high availability are enhanced by SAN capabilities.
• Separation of data network paths from control network paths enhances security.

We find that the blending of LAN and SAN capabilities of current and future releases of
HPSS effectively addresses scalability, high data rates, shared access to files, security,
availability, and manageability ways that are useful to high-performance data-intensive
computing. We believe that the lessons of NSL and HPSS have applicability to others in
our industry exploring or developing SAN based file and storage systems, as the current
explosion of electronic data goes on around us.

 240

12. Acknowledgements
We wish to thank the early participants in the National Storage Laboratory for their
support of early network centered storage architectures and the many developers within
the HPSS Collaboration who have created HPSS. This work was, in part, performed by
the Lawrence Livermore National Laboratory, Los Alamos National Laboratory, Oak
Ridge National Laboratory, National Energy Research Supercomputer Center and Sandia
National Laboratories under auspices of the U.S. Department of Energy, and by IBM
Global Services - Federal.

References

[1] The Storage Network Industry Association (SNIA) has an excellent dictionary on

their web site, www.snia.com. The dictionary is currently located in the “Resource
Center” area of the web site. The definitions in this paper differ somewhat from
SNIA definitions, but the authors acknowledge the authority of the SNIA dictionary.

[2] M. Bancroft, N. Bear, J. Finlayson, R. Hill, R. Isicoff, and H. Thompson,
“Functionality and Performance Evaluation of File Systems for Storage Area
Networks (SAN),” Proceedings Eighth Goddard Conference on Mass Storage
Systems, College Park, MD (Mar 2000). This paper has an excellent overview of
SAN file systems.

[3] R. Hyer, R. Ruef, and R. W. Watson, “High Performance Direct Network Data
Transfers at the National Storage Laboratory,” Proceedings Twelfth IEEE
Symposium on Mass Storage, Monterey, CA (Apr. 1993). This paper documents the
history of NSL-Unitree and 3rd party IPI-3.

[4] R. A. Coyne and R. W. Watson, “The Parallel I/O Architecture of the High
Performance Storage System (HPSS),” Proceedings Fourteenth IEEE Symposium on
Mass Storage, Monterey, CA (Sept. 1995)

[5] D. Teaff, R. W. Watson, and R. A. Coyne, “The Architecture of the High
Performance Storage System (HPSS),” Proceedings Goddard Conference on Mass
Storage and Technologies, College Park, MD (Mar. 1995). For more recent HPSS
architectural information, refer to the HPSS web site www.clearlake.ibm.com/hpss.

[6] C. Wood, “It's Time for a SAN Reality Check,” available at
http://www.maxstrat.com/san_wht.html. This paper includes a discussion of third-
party data transfer as implemented in the MAXSTRAT Gen4 and Gen5 disk arrays.

[7] Garth A. Gibson, David F. Nagle, Khalil Amiri, Fay W. Chang, Howard Gobioff,
Erik Riedel, David Rochberg, and Jim Zelenka. “Filesystems for Network-Attached
Secure Disks” CMU-CS-97-118 July 1997

[8] Thornton, James E., "Back-end Network Approaches", IEEE Computer, Vol. 13, No.
2, Feb. 1980, pp 10 -17. This paper reviews the history of storage network
approaches and outlines the directly attached storage features of Hyperchannel.

[9] Watson, Richard W., "Network Architecture Design for Back-End Storage
Networks", IEEE Computer, Vol. 13, No. 2, Feb. 1980, pp 32-49. This paper reviews
why a shared file system approach is critical to success of storage networks and
outlines the architecture that became the IEEE Reference Model, UniTree and HPSS,
including third-party transfers, Movers, and direct device to device transfers.

[10] allSAN Research Services, http://www.allsan.com/marketresearch.php3

241

Introducing A Flexible Data Transport Protocol
for Network Storage Applications

Patrick Beng T. Khoo and Wilson Yong H. Wang
MCSA Group, NST Division – Data Storage Institute

Affiliated to the National University of Singapore
Funded by the Agency for Science, Technology And Research Singapore

DSI Building, 5 Engineering Drive 1, 117608 Singapore
Tel: +65 8748413 Fax: +65 7772053

Email: patrick@dsi.nus.edu.sg
Web: http://nst.dsi.nus.edu.sg/mcsa/

Abstract

The purpose of this paper is to demonstrate that alternative solutions to current methods
exist for network storage. We would like to introduce one such alternative, a new
protocol that we call HyperSCSI. This protocol is used for the transmission of Small
Computer Systems Interface (SCSI) family of protocols across a network and multi-
technology device support. In this paper, we will outline some of the key features and
basic technical details of HyperSCSI. We have also developed several fully functioning
disk array prototypes using a variety of hardware and storage devices as well as
conducted benchmarks and performance tests on this. A performance comparison
between this new protocol and iSCSI and NFS is also included here.

1. The Problem

Research has been ongoing for ways to transport data over networks for storage
applications for quite some years. While we pursued efforts in developing network
storage technologies, we came across the following issues and concerns.

• High cost of Fibre Channel SANs – Implementing and managing FC-based SANs is

quite expensive. Even if hardware costs were to come down (and we expect them to
do so), ultimately the “hidden” costs of systems, infrastructure, manpower and
software implementation and maintenance is still very high.

• TCP/IP SAN performance is still not good enough without hardware acceleration –
TCP/IP is inherently slow compared to FC-based storage technologies. Special
hardware for TCP/IP represents higher costs and a more difficult upgrade path for
users.

• FC-based SANs cannot do Storage Wide-Area Networks – FC is an inherently local
communications technology, and if one needs to go wide-area, the best method is to
use the ever present IP due to its wide-spread availability. Ongoing efforts such as
FCIP, iFCP and iSCSI are in line with this idea.

• Interoperability is weak at times – Vendors are also often stuck on the interoperability
of various storage products and systems. The fundamental issue is that vendors need
to differentiate their solutions in order to compete. However, this often results in
interoperability issues or worse, vendor lock-in for customers.

242

• Security is lacking – Normal TCP/IP and Fibre Channel do not provide serious
security for data transport. FC does have LUN Masking, but this is mostly a function
of the FC switch, not the storage device itself. IPsec does provide security to IP-based
applications, but adds yet another layer of complexity to an already difficult solution.

• Inability of existing storage technologies to apply to new areas – Existing network
storage methods do not take non-traditional applications and areas into account. An
example of this is in home and personal network storage and using simple infra-red,
Bluetooth or wireless LAN for small data access or transport.

• Difficulties in scaling – Existing systems scale upwards through new higher
bandwidth standards. This is often slow due to the standards process. Furthermore,
the scaling of capacity is difficult due to the continuous need to build and implement
larger and larger disk systems that are generally not modular enough.

Based on this background, we set about designing, developing and testing a new network
storage protocol that we hope will address these and other network storage issues. We
would like to present some of the results from our research and development efforts that
began in June 2000 in this paper.

2. Existing Solutions

Recent efforts in network storage have expanded to include development of alternatives
to pure Fibre Channel as the primary method for network storage. These efforts include
iSCSI, FCIP, SST and many others. Below are descriptions of a few of these efforts.

2.1. Fibre Channel over TCP/IP (FCIP)
Fibre Channel Over TCP/IP (FCIP) describes mechanisms that allow the interconnection
of islands of Fibre Channel storage area networks over IP-based networks to form a
unified storage area network in a single Fibre Channel fabric. FCIP relies on IP-based
network services to provide the connectivity between the storage area network islands
over local area networks, metropolitan area networks, or wide area networks [1]. What
this means is that FCIP is designed to encapsulate Fibre Channel over a TCP/IP-based
network for the purposes of connecting dispersed FC-based SANs.

2.2. iSCSI
The iSCSI Internet Draft describes a transport protocol for SCSI that operates on top of
TCP [2]. iSCSI enables the use of SCSI devices over a TCP/IP-based infrastructure.
Other areas considered include Naming and Discovery, Boot and Security. It is important
to note that iSCSI is the only protocol currently in the process of standardisation that
allows for the construction of native end-to-end Ethernet SANs [3].

243

2.3. Internet Fibre Channel (iFCP)
iFCP specifies an architecture and gateway-to-gateway protocol for the implementation
of Fibre Channel fabric functionality on a network in which TCP/IP switching and
routing elements replace Fibre Channel components. The protocol enables the attachment
of existing Fibre Channel storage products to an IP network by supporting the fabric
services required by such devices [4]. The purpose here seems quite clear, that is to
implement Fibre Channel fabric architectures over a TCP/IP-based network, thus
allowing FC devices to connect and run FC natively over a TCP/IP-based infrastructure.

2.4. Metro FCP (mFCP)
mFCP is a UDP-based implementation of the iFCP over metro- and local-scale IP
networks. These networks are provisioned to have latency, reliability, and performance
levels comparable to that of a Fibre Channel network. Storage devices use the Fibre
Channel SCSI mapping in FCP for data transport and error recovery. mFCP leverages
these existing mechanisms to facilitate high-performance interconnection of Fibre
Channel- based storage devices over suitably provisioned IP networks. As in the case of
iFCP, Fibre Channel frames may be transported natively over such a network without
Fibre Channel switching and routing elements [5].

2.5. Internet Storage Name Service (iSNS)
iSNS provides a generic framework for the discovery and management of iSCSI and
Fibre Channel (FCP) storage devices in an enterprise-scale IP storage network. iSNS is
an application that stores iSCSI and FC device attributes and monitors their availability
and reachability in an integrated IP storage network. Due to its role as a consolidated
information repository, iSNS provides for more efficient and scalable management of
storage devices in an IP network [6]. iSNS is meant to be used with iSCSI, FCIP, iFCP
and such protocols for the hosts or servers to locate and use storage devices over a large
network infrastructure such as the Internet.

2.6. SCSI on Scheduled Transfer Protocol (SST)
The SCSI on STP standard defines a transport protocol within the SCSI family of
standards. The physical interconnects to which the SST protocol may attach are not
defined within this standard, but rather, are any interconnects or other protocols on which
the basic ST protocol may operate [7]. SST defines a mapping to carry SCSI traffic on
top of an STP-based infrastructure.

244

2.7. Basic Technologies
The above technologies are built on top of a basic set of storage technologies. There are
two such basic command sets today, ATA/IDE and SCSI. Based on these two command
sets, other derivative technologies have been developed. See Table 1 for a pictorial
representation of these technologies.

Base Command Set ATA/IDE SCSI

Derivative /
New Developments

ATA 133
Serial ATA

SCSI-320
Universal Serial Bus
IEEE 1394 “FireWire”
Fibre Channel
SSA

Network Storage
Developments

iSCSI
iFCP
FCIP
SST

Table 1: Storage Technologies
At this point, we turn our attention to our development efforts of the HyperSCSI protocol.
Further in this paper, we will present a few ideas for thought regarding HyperSCSI and
various other technologies.

3. The Approach

The first thing we decided on was to standardise on using the Small Computer Systems
Interface (SCSI). It is the predominant mechanism for various storage and even non-
storage devices. The question then turned quickly to how we could make SCSI “network-
enabled”. This gave rise to our idea of “HyperSCSI”.

We found that the requirements of local network storage (SAN) and wide-area network
storage (SWAN) are quite different. As such, we provided the capability to spilt
HyperSCSI protocol into multiple modes of operation. Two such modes are currently
being developed, one for local access, Local HyperSCSI over Ethernet (HS/eth), and the
other for wide-area connectivity, Wide-Area HyperSCSI over IP (HS/IP). The basic
protocol structure is essentially the same, thus allowing devices to speak local or wide-
area storage seamlessly. This has allowed us to adopt IP-based networking technologies
for wide-area applications where it is needed but bypassing IP entirely and putting the
protocol directly onto Ethernet itself for optimum local area communications. This model
also allows us to eventually develop HyperSCSI for other technologies, such as
Asynchronous Transfer Mode (ATM) for high speed Telco / ISP environments and
Wireless LAN for home or personal network storage.

Furthermore, since we are designing a low-level protocol, some of the intelligence or
command and control functions can be passed on to higher layers or the clients to adapt
and handle. This allows us to design a protocol that is lightweight and efficient, while
leveraging the intelligence and capabilities of both the storage system and host machine

245

to mutual benefit. For example, we allow device, security and compression options as
well as storage virtualisation technologies to be implemented on either the storage
system, host machine or both as the needs arise. In addition, packetisation and
virtualisation options of HyperSCSI allow us to implement N-channel communications
technologies in order to use “scale-out” methods of bandwidth and capacity increases
with fault tolerance and reliability. Figure 1 shows a Local HyperSCSI packet on
Ethernet (HS/eth). A wide-area HyperSCSI (HS/IP) packet is essentially the same, but
built on IP instead of directly on the Ethernet.

Figure 1: HyperSCSI Packet

Finally, more advanced functions and capabilities were built into the HyperSCSI protocol
to support other requirements like dynamic management, dynamic flow control and in-
band management capabilities. Manufacturers, system integrators and technology
companies are not left out in the cold either. To enable the protocol to be interoperable,
and yet be able to support vendor-specific or implementation-specific functions, a special
set of dynamically negotiated device options has been designed into the protocol. These
options can be negotiated at connect time and depending on the configuration of the
clients and servers, be enforced, supported or ignored. Thus, HyperSCSI can provide a
minimum level of connectivity for interoperability operations and while supporting
advanced vendor-specific or implementation-specific functions. Our initial encryption
methods demonstrate this function in action. Other possible device specific options
include read-only access, removable media locking and data compression.

DA SA Ethernet EtherType HyperSCSI PDU CRC

HS Header HyperSCSI Data

Ethernet
Frame

HyperSCSI
Packet

6-byte 6-byte 2-byte ≤ 1500-byte 4-byte

4-byte ≤ 1496-byte

246

4. HyperSCSI Operation

The HyperSCSI protocol comprises of various packet structures. These structures are
categorised by classes and then by specific types. Packets of a specific class and type may
also have more than one function depending on the context of the communication. These
packets are responsible for transmitting the SCSI data and commands as well as
managing the connection and communication channel. Table 2 illustrates some of the
packets in the HyperSCSI protocol.

HyperSCSI Packet Description

HyperSCSI Command Block Encapsulation Class
HCBE_REQUEST HyperSCSI command block encapsulation request
HCBE_REPLY HyperSCSI command block encapsulation reply

HyperSCSI Connection Control Class
HCC_DEVICE_DISCOV
ERY

Client issues this packet to discover storage devices on the
network

HCC_ADN_REQUEST Authentication challenge and device operation negotiation
request

HCC_ADN_REPLY Authentication and device operation negotiation reply
HCC_DISCONNECT Termination of HyperSCSI connection

HyperSCSI Flow Control Class
FC_ACK_SNR Flow control set-up and acknowledgement request
FC_ACK_REPLY Acknowledge reply

Table 2: HyperSCSI Operations

5. Typical HyperSCSI Connection Flow Sequence

Figure 2 illustrates a typical sequence of the communication stages between a client and
server using the HyperSCSI protocol. The various stages of the connection flow sequence
are described below.

247

Figure 2: Typical HyperSCSI Connection Flow Sequence

HCC_ADN_REQUEST

HCC_DEVICE_DISCOVERY

SCSI Data
Transmission

Dyn. Management
Re-authentication

and Re-negotiation

Terminate
Connection

Server Client

•
•

Connection
Setup

Flow Control
ACK Window

Size Setup

FC_ACK_SNR

HCC_ADN_REPLY

FC_ACK_REPLY

HCBE_REQUEST

HCBE_REQUEST

FC_ACK_REPLY

HCBE_REQUEST

•
•HCBE_REPLY

HCBE_REPLY

FC_ACK_REPLY

•
•

HCBE_REPLY

•
•

HCC_ADN_REQUEST

HCC_ADN_REPLY

HCC_DISCONNECT

•
•

248

5.1. Connection Setup
The HyperSCSI connection setup is a three-step handshaking procedure between a
HyperSCSI client and server pair. Typically, in a storage network, the host machine
(HyperSCSI client) is responsible for locating and initiating connections to storage
devices (HyperSCSI servers). During this process, the HyperSCSI client issues a
HCC_DEVICE_DISCOVERY via Ethernet broadcast or IP packet, to locate devices on
the network. For IP-based situations, neither broadcast nor multicast methods are used.
Instead, a client must specify an IP address (or DNS name) and a
HCC_DEVICE_DISCOVERY packet is sent over IP directly to the server. Further
information about device discovery is covered in section 6.2. Once the HyperSCSI server
receives this packet, it checks the client address for authentication purposes and transmits
the HCC_ADN_REQUEST packet back to the HyperSCSI client. In order for the
HyperSCSI client to establish a connection with the HyperSCSI server, it must then send
the correct response through a HCC_ADN_REPLY command and add the ID numbers of
the devices that it has access to into its own registry. If the server successfully
authenticates the HCC_ADN_REPLY, the connection is accepted and the HyperSCSI
client can now send commands to the server. Within the HCC_ADN request and reply
method, authentication challenges, encryption key exchanges, device specific option
negotiations and other information supporting N-channel communications such as
server/client IDs and network addresses are also provided and exchanged.

5.2. Flow Control and ACK Window Size Setup
An ACK mechanism has been adopted to support flow control of data between an
HyperSCSI client and server pair. The ACK window size refers to the number of packets
that the transmitter may continuously send before waiting for an acknowledgement. This
window size must be negotiated and agreed upon before data flow can take place and is
set by the requestor through an FC_ACK_SNR command. This packet is issued as a
separate message and typically, the server will be the one to issue this command so that
the server has the ability to balance loads or priorities across multiple clients, although
this does not mean that the client may not issue one either. Once the FC_ACK_SNR has
been received, the new status will be acknowledged to the requestor with an
FC_ACK_REPLY. If the requestor receives the acknowledgement, it assumed that the
window size is accepted and packet transmission using the new window size can begin.
The ACK window size can be set based on traffic loads, or buffer capacities and can be
set at start-up or changed dynamically during run time. This allows for different window
sizes to be dynamically set by clients and servers to fit changing performance, reliability
or QoS requirements. For example, under bad network environments, windows sizes can
be reduced, while under optimum situations, window sizes can be increased for better
performance. However, we are still studying algorithms for the detection of network
congestion and updating of the window size during run time. The basic protocol supports
this capability and we will include this portion when it is complete. Transmission
windows used here are neither fixed nor sliding in nature, but rather utilises a moving
window scheme similar to credit-based schemes used in Fibre Channel, but measured in
windows rather than individual packets. In addition, the FC_ACK_REPLY is also used to
acknowledge the correct reception of a window to the requestor and synchronises the data
flow between an HyperSCSI client and server pair. In this case, it functions as an

249

indicator of the receiver status for normal HyperSCSI data transmission. If the transmitter
does not receive the correct FC_ACK_REPLY packet within a timeout period, it will re-
transmit all the packets in the window in question again. Another retransmission scheme
supported is by using the FC_ACK_SNR to query the receiver’s status. The transmitter
can then use the FC_ACK_REPLY results to re-calculate the next packet to be
transmitted. With these two schemes, re-transmits can be conducted selectively or by
ACK windows, thus giving users a high level of flexibility in controlling the flow of data
and commands.

5.3. HyperSCSI Data Transmission
When there is a SCSI request from the local OS SCSI upper layer of the host machine,
the HyperSCSI client software is responsible for converting the OS-specific SCSI
command block together with any relevant data (as in a write command) into a platform
independent HyperSCSI Command Block (HCB). The client then encapsulates and
fragments the HCB into one or more HCBE_REQUEST packets that it sends to the
HyperSCSI server. SCSI command blocks and user data will therefore be transmitted
together in the same packet. The HyperSCSI server receives the data stream, re-
assembles the HyperSCSI command block and relevant user data, converts it back to an
OS-specific SCSI command block and passes it to the relevant hardware for execution.
When the result of this SCSI request is ready, the HyperSCSI server will send the result
together with the requested data back to HyperSCSI client by issuing the HCBE_REPLY
packet stream in a similar manner as the request. The HyperSCSI client reassembles the
HyperSCSI command block and converts it back to a OS-specific SCSI command block
before passing it on to the local OS SCSI upper layer. During this transmission, flow
control mechanisms are in effect through the use of FC_ACK_REPLY commands as
described in section 5.2.

5.4. Dynamic Management
During a HyperSCSI connection, the HyperSCSI server will regularly (timer-based) issue
a HCC_ADN_REQUEST command for three purposes, re-authentication of clients and
key-exchange for security, re-negotiation of device options (if permitted), and as a form
of “keep-alive”. Through this method, servers not only poll the client’s status, but also
check its identity. Furthermore, if HyperSCSI encryption options are turned on for data
transmission, the HCC_ADN_REQUEST and HCC_ADN_REPLY uses an authenticated
exchange mechanism to update and change encryption keys. This scheme also allows a
device’s options to be modified dynamically. For example, a device which does not have
encryption enabled may turn it on during this time so that the communication will be
secured from this point onwards. To enable such remote management functions, an
encrypted Management Command Stream is used to transfer management commands
from a client to a server or vice-versa. This MCS also allows adding or removing clients,
requesting the change of device options, changing access passwords and device access
permissions. The MCS is implemented within a valid HyperSCSI connection, thus only
authenticated HyperSCSI clients and servers can use this in-band management
mechanism.

250

5.5. Connection Termination
The HyperSCSI client can close a connection by sending an HCC_DISCONNECT
command to the HyperSCSI server. The server will then remove this client from its
connection list and close the connection. Servers do not need to acknowledge disconnect
requests from clients because SCSI connections are host-target based. Unlike TCP/IP
connections, which are full-duplex and can be closed by both clients and servers, SCSI
connections can only be terminated (gracefully) by clients. If a server were to terminate a
connection, it implies that service has been lost (or a hard disk has crashed). Servers do
not keep connection information forever, and will drop relevant connections if “keep-
alives” (as outlined in section 5.4) to a particular client should fail for some reason.
Through the use of hashing, encryption and security methods (see section 6.3),
connections are protected from denial of service attacks from hackers arbitrarily using the
HCC_DISCONNECT command.

6. Feature Comparison

There are many points to consider when making comparisons of HyperSCSI features to
other technologies. In the area for security for example, HyperSCSI makes use of
sequence numbers, hashing, SCSI command identifiers, digital keys and other
mechanisms to secure a connection, similar in some areas to IP and SCSI. A point to note
has been that where possible, we have tried to adapt good ideas and mechanisms from
other technologies for use in HyperSCSI. A good reference is the six manipulation
functions used in any data transport protocol [8]. Thus, while differences exist,
similarities will definitely show up as well in any comparison with HyperSCSI. Presented
in Figure 3 are some ideas for consideration.

Figure 3: Protocol Stack Comparison

6.1. Storage Device Management
As it turns out, this is a key aspect of network storage that is often neglected. Proprietary
enterprise management software or dedicated SAN management software from vendors
or switch manufacturers is often required to properly manage the storage devices. Fibre
Channel devices, switches and arrays often have an additional Ethernet port and IP
address for access from the management software. HyperSCSI provides an in-band
management mechanism that allows properly authenticated (and permitted) clients and
servers to manage each other’s settings and properties. Some device and management
options can even be modified and updated dynamically during a connection.

SCSI Protocol

Parallel Bus FCP iSCSI

HS / eth

HyperSCSI

TCP / IP HS / IP Fibre Channel

251

6.2. Device Discovery Mechanisms
To identify and locate storage devices, Fibre Channel has World Wide Name (WWN)
while iSCSI/FCIP/iFCP use iSNS. Such mechanisms are complex and add another
hindrance to achieving ease of use and even plug-and-play networking. For this purpose,
HS/eth uses standard a broadcast device discovery mechanism to dynamically locate
targets on the network. If a server is configured to allow a particular client to attach, it
will respond appropriately, else the discovery request is ignored. Thus the only
configuration users have to be concerned about is granting permissions, rather than
setting up complex name servers of some type. This is particularly useful in a plug-and-
play wireless personal storage network environment. HS/IP on the other hand, leverage
standard DNS mechanisms to “locate” a server across the network. We do not endorse
the idea of “broadcast / multicast to find out who’s out there on the Internet” as a means
to locating storage resources. Storage being a key and critical resource should be
managed as securely as possible, especially if it is on a public or private IP-based
network. If protocols can be routed, physical security of the storage network is less
assured. As such, administrators should know before hand the IP or DNS address of the
client and server, configure them accordingly and not have such information
“discovered” for security reasons. This also means that there is no single point of failure
like having iSNS servers or requiring expensive switches with additional intelligence
built-in. HyperSCSI clients will then attempt to connect to the server address given to it,
and no other. The only configuration that users need to worry about in the end is granting
permissions.

6.3. Security
All three TCP/IP based encapsulation methods iSCSI, iFCP and FCIP provides for and
requires the use of IPsec for securing the TCP/IP connection. Certainly, this is a step
forward when considering that Fibre Channel’s main security mechanism is LUN
masking which is implemented mostly on the switch. However, using IPsec implies
securing the entire connection. This is different from the more flexible LUN masking
method that FC uses to allow the user to secure individual LUNs as the case may be.
HyperSCSI thus supports security options to be specified by individual devices (or
LUNs) instead of at the connection level. Of course, iSCSI for example, only supports
one LUN per connection, while HyperSCSI can have multiple devices in a single
connection, as outlined in section 6.4. It should also be noted that like Fibre Channel,
HS/eth (which does not use IP at all and is not routable) would require physical access to
the network in order to hack it. HyperSCSI also allows for security to be modularised into
different levels of requirements such as hashing, encryption or none at all, thereby giving
even more options to secure (or not) the device and/or the connection.

6.4. Multiple Device Access
iSCSI uses one or more TCP connections to make up a single session and requires that
across all connections within a session, an initiator sees only one “target image”. All
target identifying elements, like LUNs, are the same [9]. While this makes sense in a pure
SCSI environment, where a single host bus adapter would see a single target to have one
“target image”, this may not be true in a network storage environment where usually disk
arrays of one or more targets may be “exported” to the initiator. HyperSCSI on the other

252

hand allows a single connection to have access to as many SCSI devices (or LUNs) as
supported by both the initiator and target. This single connection can then be established
as a virtual channel over multiple physical links to form a redundant trunk. Devices that
may require multiple LUN access includes optical jukeboxes and tape libraries.

6.5. Optimising Performance
One of the most controversial aspects of performance for network storage are the
overheads of TCP/IP. Industry analysts have noted that the TCP/IP stack is very CPU
intensive and without complex optimisation techniques like hardware accelerators,
interrupt coalescing, checksum offloading, and so on [10], the only practical application
for iSCSI is to extend current Fibre Channel SAN-to-LAN connectivity into the realm of
SAN-to-MAN/WAN connectivity [11]. If every implementation were to require TCP/IP
implemented in hardware, it would be no different than requiring all devices to have
Fibre Channel hardware built-in. HyperSCSI can bypass TCP/IP entirely to build a
storage network similar to (and capable of replacing) Fibre Channel architectures, but
using plain old Ethernet instead. For wide area implementations, HyperSCSI does in fact
also support the use of IP-based infrastructure for building Storage Wide-Area Networks
through HS/IP, a strategy which is no different from Fibre Channel. It should also be
noted that while HS/eth reduces overheads partly by eliminating certain checksums (ie.
header checksum), IPv6 also does away with the header checksum. IPv6 designers felt
that the risk was acceptable given that data link and transport layers check for errors [12].
Another key point of HyperSCSI is its reliance on state tables so that information about a
connection does not have to be retransmitted over and over again. Such information
includes SCSI host/target information, device options and HyperSCSI sequence numbers.
This is also similar in idea to STP’s architecture of setting up the receiving buffer and
related information before transmitting data [13]. This is also a security benefit since the
capture of a single packet is unlikely to reveal much information about the connection
itself. For HS/IP, only one IP port is required, since each client can access multiple
devices through a single connection, unlike iSCSI (see section 6.4).

6.6. Flow Control Issues
Fibre Channel is often touted as the best solution for network storage due to its high
speed packetised but dedicated channel for storage. iSCSI on the other hand relies upon
TCP/IP for flow control and packet transmission and can leverage TCP/IP’s sliding
windows as a counter to the idea of packetisation being less efficient compared to
dedicated channels. To provide the best of both worlds, HyperSCSI adopts a moving
window mechanism but makes the window size dynamic. A balance is provided in that
the window size does not fluctuate like TCP/IP’s sliding windows, but can and does
change dynamically in the middle of a connection. Since this window size is dynamically
controlled by clients and servers, algorithms for determining the window size can be
adopted to find the optimal window size during run-time, thus adapting to network
congestion. This is particularly evident in HS/eth implementations. HS/IP of course
leverages standard IP-based methods for flow-control issues. In addition, retransmission
can be implemented either using a selected retransmission scheme or a simpler window
retransmit scheme. This can be decided based on the implementation environment, thus
giving users a wide degree of flexibility and performance tuning options.

253

6.7. Simplicity, Interoperability and Diversity
HyperSCSI is designed from the ground up to be simpler for users to implement and yet
capable of achieving interoperability without sacrificing diversity. For this purpose,
negotiable device options allow for vendor-specific or implementation-specific features
to be supported. If different vendor devices with different supported device options were
to try to connect to each other, the worst case is expected to be a basic connection with no
additional features or functions. When used in conjunction with the varied SCSI-3
command set and the Management Command Stream, this becomes quite a powerful
value-added option for vendors and users alike.

7. Development Progress

We have implemented and tested HyperSCSI under various conditions over Fast Ethernet
and Gigabit Ethernet. The results so far have proven to be most encouraging. Today,
HyperSCSI on Gigabit Ethernet achieves a quick 96% of the local physical disk
performance compared to iSCSI’s 82% for block level access. The results are even better
when considering file system level tests. Using a straightforward file copy test,
HyperSCSI can reach 88% of the local physical disk performance, iSCSI managed 43%
while NFS only succeeded to match 39%. Not only that, it can be seen that HyperSCSI
provides a more reliable and predictable performance level similar to that of the local
physical disk than iSCSI or NFS and is less dependent on caching to achieve
performance. One might wonder why iSCSI performance is not as good as expected.
Seeing how iSCSI performance seems to closely track NFS performance, we hypothesise
that the TCP/IP overhead is the differentiating factor between iSCSI and HyperSCSI
performance. The following charts highlight some of the performance measurements that
we have conducted.

The results illustrated in Figure 4 represent results from five different tests, two of which
were raw block level reads (hdparm and dd) and the other three represent data access
above the file system level. These tests were done on the same hardware and the same OS
for all three technologies and both the client and server. We used two AMD Athlon
1.2GHz SMP machines with 32-bit 33MHz PCI busses, 266MHz 256MB DDR RAM
running RedHat Linux 7.1 using the standard Linux kernel version 2.4.16, one of which
was the client and the other was the server. Both machines had 3Com 3C985B-SX
Gigabit Ethernet NICs, connected over a cross connect fibre-optic cable with jumbo
frames, and the server used an Adaptec 39160 U160 SCSI controller. The server exported
8 IBM UltraStar U160 9.1GB 10k RPM drives configured in RAID 0. For the tests using
a file system, Linux Ext2 was used as the file system. We used NFS version 2 over UDP
from the RedHat Linux RPM version 0.3.1-5. The iSCSI version we used was version 6
from Intel, while the HyperSCSI version was 110-011226. The destination for the cp test
was /dev/null while the Iozone version used was 3.71. We would like to draw attention,
not to the absolute numbers of MB/s, but rather to the performance comparisons between
iSCSI, NFS and HyperSCSI.

254

Figure 4: HyperSCSI Block and File Access Performance Comparison

Feature-wise, the HyperSCSI reference implementation already supports standard SCSI
hard drives, IDE hard drives, software RAID / virtualised drives, optical disks (like
DVDROM and CDRW), USB devices (like Iomega Zip Disk) and SCSI tape drives (like
HP DAT40). We have even successfully used HyperSCSI is to write CDs remotely over
our own live corporate LAN. File systems like Microsoft’s FAT16/FAT32, SGI’s XFS,
IBM’s JFS and Linux Ext2/Ext3 have all been successfully tested on HyperSCSI drives.
HyperSCSI clients and servers have been successfully implemented on Linux, while
client versions on Windows 2000 and Solaris 8 is currently in development. Encryption
schemes that have already been implemented include 64-bit Blowfish and 128-bit
Rijndael. HyperSCSI has been assigned its own IEEE Ethertype Number, and will soon
receive a registered IP port for HS/IP implementations.

Areas that are currently under development (at the time of writing of this document)
include aspects of the Management Command Stream, the Transmission Pause / Resume,
various hashing and security related options, HS/IP implementation and Windows 2000
and Solaris 8 versions of the Linux client. With continued optimisations and bug-fixes of
the reference implementation, we expect raw block data read speeds for a RAID0
subsystem of 8 drives on normal frame Gigabit Ethernet to exceed 100MB/s in early

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

M
B

/s

Block Read -
hdparm

Block Read - dd File Read - cp File Write -
iozone

File Read -
iozone

Benchmarks - GE Jumbo / RAID 0 / SMP / 1GB Data Set

NFS

iSCSI

HyperSCSI

255

2002. Another effort underway is the testing of several N-channel communications
schemes for HyperSCSI. A Peer Round-Robin scheme is likely to be used in the final
implementation. The documentation of HyperSCSI specifications is also critical in order
to allow other organisations to adapt and build their own HyperSCSI solutions. Currently
there are three documents in the HyperSCSI specifications, HyperSCSI Protocol
Specifications, HyperSCSI Security Specifications and HyperSCSI Management
Command Stream Specifications. A Quick Reference Manual, Reference Implementation
Source Code Documentation, and various introductory documents like this one will also
be provided. These documents will be available on our website when completed.

8. HyperSCSI Applications and Conclusion

Figure 5: HyperSCSI in Action

We believe that HyperSCSI provides an opportunity to address various concerns and
open up new possibilities for network storage. The Local HS/eth protocol allows the
construction of high-speed Ethernet based SANs while the use of Wide-Area HS/IP
permits mobile devices like laptops to access the corporate SAN directly (bypassing
servers if need be). Storage devices can support SAN or NAS or both access methods
simultaneously through the use of a single network interface. Home devices will also be
able to access storage directly with simple plug-and-play methods over Fast Ethernet or
Wireless LAN using HyperSCSI’s device discovery schemes. HyperSCSI has also been
designed with the future in mind. It supports more than 32,000 different device options
that will allow vendors to introduce a wide variety of vendor-specific capabilities and
technologies, without sacrificing interoperability. The protocol also allows each single

Home

Corporate

Movie
Server

Video
Borrowing

Value-Added
Services

Mobile
Laptop HS/IP

TCP/IP

Remote SAN Access

HS/IP
TCP/IP

Remote
SAN Access

HyperSCSI in Action

Cable / Satelite TV

TV A / V

PDA HS/eth
FIR

Home
Security

HS/eth
Fast E

Telephone

PC
Fast E

HS/eth
TCP/IP

NAS File
Sharing

Secure
local access
& optimised
wide-area
support

Digital Storage
Video Play/Record
Fax Receive/Send

Voicemail
Internet Gateway

HNS Device

Internet
or VPN

Disk
Array

Disk
Array

Disk
Array

GE SAN

HS/eth HS/eth

HS/eth HS/ethHS/IP

Web
Server

App
Server

PC PCPC

FE LAN

Router

TCP/IP

256

HyperSCSI connection to handle 64 simultaneous in-transit SCSI commands, each with
SCSI command block sizes up to 512KB. These SCSI command block sizes can be
further increased six-fold by using Gigabit Ethernet jumbo frames, thus providing an
even higher level of performance.

In conclusion, we believe that HyperSCSI is a relatively simple technology that can
provide users with performance, security, scalability and flexibility, thus making it a
viable alternative solution for network storage applications.

For more information on HyperSCSI, please visit our website at
http://nst.dsi.nus.edu.sg/mcsa/

9. Acknowledgements

The authors would like to thank various people who have helped tremendously in the
writing of this paper. First and foremost of course is Rod Van Meter who provided
valuable feedback and reviews of our work, and in so doing helped us produce a better
paper. In addition, various people have contributed tremendously in the development and
testing of HyperSCSI, including Alvin Koy, Ng Tiong King, Vincent Leo, Don Lee,
Premalatha Naidu, Wang Hai Chen and of course, Wei Ming Long, who carried out a lot
of work on the testing environment. Thanks also to Jimmy Jiang, Lalitha Ekambaram and
Yeo Heng Ngi, who have contributed much to the development of HyperSCSI on
Win2K. This has been a team effort and our thanks and appreciation goes out to all that
have helped in one way or another.

References

[1] IPS Working Group Internet Engineering Task Force, “Fibre Channel over TCP/IP

(FCIP) Internet Draft”, November 2001

[2] IPS Working Group Internet Engineering Task Force, “iSCSI Internet Draft”,

November 2001

[3] Brent Ross, Adaptec Inc, “IP Storage and iSCSI – The SAN Fabric of Choice”,

Proceedings of Storage Area Networks Conference 2001

[4] IPS Working Group Internet Engineering Task Force, “iFCP – A Protocol for

Internet Fibre Channel Storage Networking Internet Draft”, November 2001

[5] IPS Working Group Internet Engineering Task Force, “mFCP – Metro FCP Protocol

for IP Networking Internet Draft”, May 2001

[6] IPS Working Group Internet Engineering Task Force, “Internet Storage Name

Service Internet Draft”, November 2001

257

[7] American National Standard of Accredited Standards Committee ANSI NCITS

T11.1 Technical Committee, “Information Technology – SCSI on Scheduled
Transfer Protocol (SST) Work Draft”, July 2001

[8] David D Clark and David L. Tennenhouse, “Architectural Considerations for a New

Generation of Protocols”, ACM SGICOM 1990 Symposium

[9] IPS Working Group Internet Engineering Task Force, “iSCSI Internet Draft”,

November 2001

[10] Jeffrey S. Chase, Andrew J. Gallatin and Kenneth G. Yocum, “End System

Optimisations for High-Speed TCP”, IEEE Communications Magazine, April 2001

[11] Roy Levine, “IP-based Storage: Benefits and Challenges”, Infostor, March 2001

[12] Andrew Conry-Murray, “Internet Protocol Version 6”, Network Computing,

December 2001

[13] American National Standard of Accredited Standards Committee ANSI NCITS

T11.1 Technical Committee, “Information Technology – Scheduled Transfer
Protocol Revision 4”, October 2000

[14] Network Working Group Internet Engineering Task Force (IETF), “Internet Protocol

Version 6 (IPv6) Specification RFC 2460”, December 1998

[15] American National Standard of Accredited Standards Committee ANSI NCITS T10

Technical Committee, “SCSI-3 Architecture Model (SAM)”, 1996, Revised 2001

[16] American National Standard of Accredited Standards Committee ANSI NCITS T11

Technical Committee, “Fibre Channel Protocol (FCP)”, 1996, Revised 2001

[17] Information Sciences Institute University of Southern California, “Internet Protocol

DARPA Internet Program Protocol Specification RFC 791”, September 1981

[18] Information Sciences Institute University of Southern California, “Transmission

Control Protocol DARPA Internet Program Protocol Specification RFC 793”,
September 1981

259

Point-in-Time Copy: Yesterday, Today and Tomorrow
Alain Azagury, Michael E. Factor and Julian Satran

IBM Research Lab in Haifa
MATAM, Haifa 31905, Israel

{azagury, factor, satran}@il.ibm.com
Phone: +972 4 829-6211, Fax: +972 4 829-6116

William Micka
IBM Storage Systems Group

9000 S RITA ROAD, Tucson, AZ, USA
micka@us.ibm.com

Phone: +1 520 799-4132

1. Introduction

Making copies of large sets of data is a common activity. These copies can provide a
consistent image for a backup, a checkpoint for restoring the state of an application, a
source for data mining, real data to test a new version of an application, and so on. One
characteristic all of these uses have in common is that it is important that the copy appear
to occur atomically, i.e., any updates to the data source being copied either occur before
or after the copy. In this work, we examine the history, the state-of-the art, and possible
future of mechanisms for copying large quantities of data via storage subsystem facilities
for providing point-in-time (PiT) copies.

The Storage Networking Industry Association (SNIA) defines a point-in-time copy as:

A fully usable copy of a defined collection of data that contains an image of the
data as it appeared at a single point-in-time. The copy is considered to have
logically occurred at that point-in-time, but implementations may perform part or
all of the copy at other times (e.g., via database log replay or rollback) as long as
the result is a consistent copy of the data as it appeared at that point-in-time.
Implementations may restrict point-in-time copies to be read-only or may permit
subsequent writes to the copy. Three important classes of point-in-time copies are
split mirror, changed block, and concurrent. Pointer remapping and copy on write
are implementation techniques often used for the latter two classes. cf. snapshot [1]

As hinted at by the above definition a range of point-in-time copy facilities exist. Some
of these facilities operate at the logical level of the file system [2][3] and some operate at
the physical level of the disk storage subsystem [2][4][5][6]. We focus on copy facilities
provided by disk storage subsystems.

260

Before the invention of point-in-time copy facilities, to create a consistent copy of the
data, the application had to be stopped while the data was physically copied. For large
data sets, this could easily involve a stoppage of several hours; this overhead meant that
there were practical limits on making copies. Today’s point-in-time copy facilities allow
a copy to be created with almost no impact on the application; in other words, other than
perhaps a very brief period of seconds or minutes while the copy is established, the
application can continue running.

This paper describes the functionality of a point-in-time copy facility and describes both
the benefits and drawbacks of providing this facility on the storage subsystem. While
there are other benefits, the biggest benefit of providing this facility on the storage
subsystem is performance; we do not needlessly add load to the storage network or host
as part of making the copy. The biggest drawback is that the storage subsystem in
today’s world is only aware of data at the level of logical units and blocks;i this makes it
hard to meaningfully perform copies at a granularity of less than an entire logical unit.

After defining the concept of point-in-time copies, we briefly survey several existing
approaches including EMC’s TimeFinder[4], IBM [7] and StorageTek’s [8] virtual array
solutions, and several file system based approaches. Although the focus of this paper is
on point-in-time copy solutions for block controllers, we also describe file system
snapshots, in particular Network Appliance’s snapshot feature [9]. We then describe the
FlashCopy facility of IBM’s Enterprise Storage Subsystem (ESS) [6] which was
developed in our labs; we present performance results showing that this facility allows
copying arbitrary amounts of data in almost zero time.

We then describe one possible future for point-in-time copy facilities. We see two main
future thrusts for point-in-time copy facilities. This first is improved performance; while
today’s facilities can make a copy in almost zero time, even this is sometimes too much
time. The second is a melting of the division between the organized logical view of data
implemented by a file system and the physical view as seen by today’s disk subsystems
[10]. In particular we believe that the arrival of object based storage e.g., [11], will
provide a critical enabler for allowing a disk subsystem to provide a physical point-in-
time copy of logically meaningful data.

The rest of this paper is organized as follows. The next section provides a background on
point-in-time copy facilities, describing the different approaches to implementing these
facilities and the tradeoffs between point-in-time copies at the file system level and at the
storage subsystem level. Section 3 describes several existing facilities for point-in-time
copy and Section 4 describes the FlashCopy facility of IBM’s ESS, showing how this
facility allows copying almost arbitrary amounts of data in nearly zero time. In Section
5, we describe one possible course of development for point-in-time copy solutions prior
to concluding.

2. Background

As we stated in the introduction, a point-in-time copy may be made for many reasons.
While backup is probably the most common reason, checkpointing, data mining, testing

261

and other reasons also exist. In all cases, prior to making the copy, applications
accessing the data must purge any caches they have; many middleware applications, such
as databases, provide mechanisms to ensure that the underlying storage subsystem or file
system has a consistent copy of the data without stopping the application. In addition, for
copy facilities provided by the storage subsystem, the file system must ensure that it has
written a consistent image of the data to the storage subsystem.

Obviously if the data to be copied involves multiple entities, e.g., multiple logical units or
multiple file systems, this quiescing of the application must occur atomically for all of the
entities. Only after all of the copies have been made, is the application again allowed to
modify the underlying data. This means that application access to the data is limited for
the duration of time it takes to execute the copy.

Prior to the development of point-in-time copy solutions, the only way to make a copy of
a data set was to allocate space and physically copy the to data. To ensure consistency,
the application was not allowed to access the data while the copy was being executed.
Since the time required to execute a physical copy is a function of the size of the data,
this could easily lead to an application being unavailable for an extended period of time.
This time overhead, as well as the need to fully allocate the space required for the target,
limited the use of copies; one would not copy an entire volume of data every hour for
purposes of checkpointing an applications state.

In none of today’s popular facilities, however, does the point-in-time copy command
execute a physical copy of the data. Instead the data is either copied prior to the
execution of the command or some form of copy-on-write like facility is used. Not only
does this reduce system overhead, but also it enables copies to be used in the range of
applications listed above.

As stated above, there are different classes of implementations of point-in-time copy. In
a split mirror a mirror of the data is constructed prior to the point-in-time copy. After a
complete mirror of the data to be copied exists, the point-in-time copy is made by
“splitting” the mirror at the instance in time of the copy. The biggest benefit of a split
mirror solution is that the point-in-time copy executes very quickly; there is no work
required in order to create tables or mark data as copy on write. On the other hand, split
mirror suffers from a significant drawback in terms of advanced planning. One cannot
create a split mirror at any time one wants; rather, it is necessary to plan ahead and create
the mirror in advance of splitting. Since the mirror requires a complete physical copy of
the data, the set up for creating a split mirror must begin significantly prior to the actual
point-in-time copy. A second drawback of a split mirror solution since it is based on
physical mirror copy is that it inherently requires that the space allocated for the target of
the copy be equal to the space used by the source. Finally, the overall storage system
performance is affected by the requirement to continuously mirror the changes until the
administrator decides to split the mirror.

One variant of a split mirror solution allows the mirror to be resynchronized with the
source. When this is done, only the records of the source, which have changed since the
mirror was split, are copied to the source. This allows a true mirror to be created much

262

faster than if the entire data set needed to be physically copied to the mirror. This variant
does, however, require work to create data structures to track which records in the source
have been modified.

A second class of implementations is changed block. A changed block implementation
shares the physical copy of the data between the source and the target until the data is
written; this sharing can be at the level of a sector, a track, or conceivably some other
granularity (we refer to this unit as a record below). To allow the data to be shared some
form of table is used to determine where the actual copy of the data exists. When the
source and target are accessed this table is used to determine from where the data is to be
retrieved.

This table can be the directory that exists in virtual arrays such as log structured arrays
[12] or it can be some other mechanism that is used only for purposes of supporting a
point-in-time copy, such as a copy-on-write bitmap that tells whether or not a given
record has been copied. A changed block approach is easy to implement on completely
virtual systems, or other mechanisms, which use indirection for all accesses; however, it
is also possible to implement a changed block approach in more conventional systems.

When the data is written a changed block implementation will either manipulate pointers
in a directory or copy the written data. In either case, after the update the source and the
target no longer share a physical copy of the given record.

A changed block implementation requires setting up the table to keep track of what
records have been copied when the point-in-time copy is made; this obviously takes time
that is linear in the size of the data to be copied. However, since these tables can be no
more than a copy-on-write bitmap, this can be done very efficiently. One big benefit of
changed block implementations over split mirror implementations is that no advanced set
up is required prior to executing a point-in-time copy. Another feature of a changed
block implementation is that the amount of space required is a function only of the
amount of data modified.

A concurrent point-in-time copy is similar to a changed block implementation with one
significant difference. A concurrent implementation always physically copies the data.
Like a changed block solution, however, when the point-in-time copy is executed, no
data is physically copied. Instead, the concurrent solution sets up a table to keep track of
which data has been physically copied. It then physically copies the data in the
background, using the table to synchronously copy any records that are about to be
modified.

One other axis on which point-in-time copy solutions can be differentiated is whether or
not the target of the copy is a first class citizen, i.e., can the target be freely accessed or
are there limitations on the way it is used, e.g., no updates, only sequential reads, etc.

As discussed in the introduction point-in-time copies can be made either at the file
system level or at the storage subsystem level. The biggest benefit of performing the
copy at the storage subsystem level is that it can reduce the load on the server and on the

263

storage network (assuming one is being used). When the copy is made at the level of the
file system, all of the computation of the copy must be made on the file server; in
addition, whenever physical copies are required, the data must be transferred up through
the storage subsystem, over the storage network to the server and then back down the
same path. If the copy is made by the storage subsystem, we can totally avoid the
overhead on the storage network and on the host.

3. Point-in-Time Copy Today

Research on storage point-in-time copy techniques is extremely scarce. Since one of the
major uses of point-in-time copy is as a building block for efficient backup, the literature
on backup techniques covers partially this topic [13]. In this section, we review some of
the major point-in-time solutions available in the market. In addition, while we focus on
disk storage subsystems, we describe two point-in-time copy techniques at the level of
the file system.

3.1 Split Mirror Solutions

EMC’s TimeFinder [2][4] and Hitachi’s ShadowImage [5] are two examples of split
mirror implementations. We describe TimeFinder’s major characteristics. TimeFinder
allows creating mirror images of standard devices. These mirrored images, called
Business Continuance Volumes (BCVs), may be later split and accessed independently.
BCV images are created in the background and several copies of a standard device may
be created. BCVs can go through the following stages:

• Establish – a new BCV device is established and, initially, contains no data.

• Isynch – the point-in-time where the BCV pair is synchronized with the standard
device.

• Split – makes the BCV volume available to the host. The content of the BCV volume
is a point-in-time copy of the standard device at the time the split command was
issued.

• Re-establish – The volume is re-assigned as a mirror of the standard device. The
BCV volume is refreshed with any updates made to the standard device, and any
updates to the BCV after the split are discarded.

• Restore – Copies the contents of the BCV back to the standard device.

• Incremental restore – Discards all the changes made to the standard device since the
split occurred and copies updates made to the BCV device to the standard device.

The latest version of TimeFinder [14] introduces changed block capabilities: a new
instant split operation allows BCVs to become immediately available to the hosts. This is
achieved by copying tracks before they are modified in the standard device.

264

3.2 Log Structured Changed Block Solutions

IBM’s RAMAC Virtual Array (RVA) [15][7] and StorageTek’s Shared Virtual Array [8]
are major examples of changed block solutions that leverage the log structure data
structures for their point-in-time copy implementation. IBM’s RVA represents a volume
using a set of tables that eventually point to the set of tracks that comprise the volume.
RVA also maintains a reference count for each track containing physical data. A
snapshot operation from a source to a target volume requires (1) decreasing the reference
count of the target tracks, (2) copying the “track” table from the source to the target and
(3) increasing the reference count of the source volume tracks. RVA’s snapshot is both
efficient in time – requiring only to copy the track table of the source and updating the
track reference counts – and efficient in space – since no copy of the user data is
required.

3.3 File System Solutions

Many UNIX-like file systems have leveraged their inode, pointer-based data structures to
implement efficient snapshot capabilities. The Andrew File System [3] implements a
Clone operation that creates a frozen copy-on-write snapshot. Snapshots are read-only
and are traditionally used for backup purposes, to allow backing up a consistent point-in-
time snapshot, with minimal disruption of the activity on the production file system. In
addition, snapshots can be used for easy restore of deleted or corrupted files.

Network Appliance’s filer [2] also implements a copy-on-write-based snapshot facility
[9] that creates on-line, read-only copies of the entire file system. It currently allows
administrator to create up to twenty snapshots of a file system. In order to support
snapshots, the free block data structure is extended to mark to which snapshots the block
belongs. A block might be returned to the “free pool” only after each bit, for each
snapshot is zero. Snapshot are created under the “~snapshot” directory. Users may
retrieve files from previous snapshots, and restore them using standard file system “copy”
commands.

Network Appliance has integrated its snapshot features with a SnapMirror/SnapRestore
capability. SnapMirror allows automated, consistent replication of file systems to remote
sites. It creates periodically a snapshot of the file system and then transfers the modified
blocks to the remote site. After a baseline transfer is complete, Snapmirror leverages the
snapshot bitmaps to identify which blocks need to be transferred to the remote site.
SnapRestore allows restoring a mirrored snapshot to the primary.

File system snapshots are very efficient operations, since they only require keeping
copies of modified or deleted files. However, since, not only the data, but also the
metadata is read-only, one cannot modify metadata attributes of files in snapshots. For
example, revoking access to a file from a user does not prevent him from accessing
(earlier versions of) the file in previous snapshots. In addition, when a copy is required,
the data must be transferred from the storage subsystem to the file system and back to the
storage subsystem.

265

4. ESS's FlashCopy Today

FlashCopy is an ESS Copy Services function, developed in our labs, which is a
concurrent class point-in-time copy operation. It utilizes copy-on-write bitmap techniques
to maintain knowledge of which blocks of data have been a modified after the point-in-
time copy was created. Real storage equal in size to the source data is required on the
target volume. When a block of data on the source volume is modified, the previous
version of that data is copied to the target volume before the new modification overwrites
it. An optional background copy task may be initiated to perform the physical copy of
the entire source volume to the target volume.

FlashCopy, unlike a split mirror technique, provides instant availability for read and write
data on both the source and target volumes as soon as the invocation of the operation is
complete. It utilizes the ESS cache and fast write functionality to mask any performance
affects related to the point-in-time copy which may be activated for a given volume.
FlashCopy operates on volumes for zSeries hosts and for volumes attached to open
systems hosts. When invoked from a zSeries, the host program can specify that only a
portion of the volume be copied. This is called a sparse volume. If portions of the volume
are not allocated or are catalogs or volume table of contents, these can be excluded from
the copy to the target and managed by the host software. An open systems volume is
copied in its entirety.

The most important performance metric related to the creation of the point-in-time copy
is the elapsed time required for the invocation of the copy on one pair or multiple pairs of
volumes. During invocation, the application must maintain a consistent image of the data
across all volumes used for the application. The amount of time required can be
considered an application impact and must be minimized by the design of the copy
function.

When a FlashCopy is initiated, the source and target are entered into a relationship using
a bitmap table which reflects the location of the point-in-time data - either on the source
volume or on the target volume. While the relationship table is being created within the
ESS control unit, the two volumes are made unavailable to all customer access. The time
for this operation can vary considerably with the method of FlashCopy initiation. The
zSeries program DFSMSdss [15] performs various steps prior to the relationship creation
period which elongates the initiation. DFSMSdss must read the Volume Table of
Contents (VTOC), perform RACF security verifications, and then reserve the volumes
involved for data integrity purposes. Given this task overhead, the FlashCopy initiation
can take approximately 6 seconds for a 3 gigabyte volume. By contrast, the TSO
FlashCopy function and the ESS Specialist Command Line Invocation does not include
reading or verification steps and can take less than 2 seconds for the same relationship.
By performing the invocation for many volumes in parallel, the time to complete the set
of relationships is much better than the summation of individual invocations.

266

of Flash
Copies

dss small
VTOC

dss large
VTOC

TSO
invoked

1 6 sec 8 sec 1.2 sec
256 48 sec 66 sec 18 sec

As can be seen from the table, the invocation time is a function of the number of volumes
in the total data collection and the amount of information on the volumes as reflected in
the VTOC.

Another important performance measurement is the effect on application response time
and the number of I/O operations that can be executed per second while a FlashCopy
relationship exists for a volume pair or number of volume pairs. Measurements were
made using 256 FlashCopy pairs while running a cache standard workload which show
less than 3% reduction in the I/O rate when the workload volumes are in a relationship
with the no background copy option selected. With the background copy option selected,
the rate reduction is about 7%.

The change to the workload response time is negligible when the no background copy is
specified. There is negligible response time increase when the background copy is
specified for 32 volumes or less in one control unit. With 256 volumes in background
copy mode, the response time rises doubles until the number of background copy tasks is
reduced by completing the copy for a pair of volumes.

5. The Future of Point-in-Time Copy

The world of data copies has improved significantly since the invention of the first
facilities that allowed a logical copy without requiring a physical copy. However, there
is still room for improvement. In the small, the improvements include improving the
performance of today’s solutions to reduce even further the impact on the application for
creating a copy. In addition, it should be possible to provide greater flexibility in the
facilities provided by storage subsystems, allowing a greater degree of knowledge of the
logical structure of the data to flow down to the physical layer.

In the large, the greatest improvement may come from new storage architectures such as
object based storage. With an object based storage and the appropriate file system
architecture, it should be possible to completely bridge the gap between the logical
structure as seen by the file system and the physical structure provided by the storage
subsystem.

5.1 Improving Today’s Point-in-time Copy

As fast as the execution of a point-in-time copy may be, until it is instantaneous, it will
never be fast enough. This is because as described in Section 2, while the command for
the point-in-time copy is executing, it may be necessary to limit application access to the
data being copied.

267

There are several aspects to improving the performance of today’s point-in-time copy
solutions. First, it is important to speed up the time required to ensure that the
component performing the copy has a copy of the data that is consistent with the
application’s view of the data. This includes ensuring that all data that is in cache has
been written through to the appropriate level of the system or at the very least knowing
what data needs to be retrieved from a cache.

Second, the data structures used to manage the copy need to be set up quickly. To some
degree this is a problem that is inherently linear in the size of the data to be “copied”; for
instance, a table recording which data has been copied must be a size that is the same
order of magnitude as the size of the data. However, even here, by intelligently preparing
the data structures it may be possible to hide some or most of the overhead from the
application.

In addition to improving performance, we believe that point-in-time copy solutions will
evolve to have more flexibility in terms of the allowing knowledge of a file system’s
logical structure to flow down to the storage subsystem. To a degree this exists today for
mainframe data with the support for making point-in-time copies of individual data sets
[6][16]. However, more work is required to provide this same facility for partitions in a
way that is not tied to a particular logical volume manager or file system.

5.2 Point-in-time Copy and Object Based Storage
Object Based Storage (e.g., [11]) provides the client (storage consumer) with a storage
abstraction closer to the client’s view of the data than the conventional device view. In
conventional storage devices the client perceives a device as a collection of storage
blocks (usually fixed length). Organizing this primitive storage into entities significant to
applications and managing all storage resources is delegated to client software (operating
system), sometimes in conjunction with a third party (a file server). Only through client
and/or file server software is the client able to attach significance to data. This classical
structure has two main disadvantages:

• it is hard to scale to large volumes of data and large throughput since data servers
quickly become bottlenecks

• data management at storage level has no relation to content

Widely discussed in academia and now starting to happen in industrial laboratories, a
new form of storage access - Object Based Storage - changes the way storage is accessed
and managed.

Object Based Storage (OBS) relegates space management to the storage subsystem.
Instead of perceiving a volume as an amorphous collection of equally sized storage
blocks the storage client perceives now a volume as a collection of variable length
(possibly sparsely populated) objects and the mapping of those objects to device-blocks
is delegated to the storage controller.

268

Client access to data is based on an object-handle (capability) established by a
management component in the network. Access to data is protected through the
capability and unmediated.

In addition to enable building highly scalable storage subsystems (as the access does not
have to go through a data server) Object Based Storage make access units (objects)
“visible” and manageable at storage subsystem level. The previously discussed copy
functions can now be performed based on policies pertinent to specific objects or classes
of objects.

In addition since the storage subsystem has complete control over device block location
information and internal object structure, management functions, such as point-in-time
copy or incremental point-in-time copy, can be made with minimal space (and time)
overhead and encompass any set of objects (not necessarily a volume or a large portion of
a volume). And although the examples that follow involve files it can easily be observed
that they might as well refer to database tables or any other type of storage object.

5.2.1 Point-in-time copy for a set of files

Point-in-time copy for a set of files in a file-system built using Object Based Storage
involves the following steps on a client/administrative system:

1. Lock the set of files

2. Copy the directory entries for the set of files

3. Request a point-in-time copy for the set of objects containing the files data from the
storage subsystem to be performed asynchronously

4. Release the locks

5. Wait for the point-in-time copy command to end

The storage subsystem will do the following:

1. Mark all the involved objects (their control structures) as copy-on-write

2. Return to the host an indication of "successful request"

3. Perform the request while accepting read/write operations from the host

It is easy to observe that given enough free space to accommodate host write operations
during the point-in-time copy generation, any number of point-in-time operations can be
performed simultaneously.

To perform such a point-in-time copy for a set of files using today’s mechanisms, would
require that we give the control unit detailed knowledge of the way the file system lays

269

out files. Since on disk layout differs between file systems, separate implementations
would be required for each file system supported.

6. Conclusions

We have described the current state of the art of point-in-time copy operations, focusing
on the FlashCopy facility of IBM’s ESS developed in our labs. Using FlashCopy as an
example, we have shown how today’s point-in-time copy facilities can perform a
semantic copy of large quantities of data in essentially zero time.

While performance of today’s copy is orders of magnitude superior to the time required
to make a physical copy, there is still some room to improve performance. More
significantly we see that the future melding of block based and file based storage,
promised by facilities such as object based storage, will provide an opportunity for
storage subsystems to provide point-in-time copy for entities that are meaningful to the
end user, e.g., files, and not just entire or large portions of logical units.

Acknowledgements

FlashCopy would not exist today were it not for the diligent work of a large development
team led by Yoram Novick along with the support of the entire ESS development team.

References

[1] A Dictionary of Storage Networking Terminology,
http://www.snia.org/English/Resources/Dictionary_FS.html

[2] Hutchinson, N., Manley, S., Federwisch, M., Harris, G., Hitz, D., Kleiman, S.,
O’Malley, S., “Logical vs. Physical File System Backup” Third Symposium on
Operating Systems Design and Implementation.1999.

[3] Howard, J., Kazar, M., Menees, S., Nichols, D., Satyanarayanan, M.,
Sidebotham, R., West, M., “Scale and Performance in a Distributed File
System”, ACM Transactions on Computer Systems, Vol. 6, No. 1, February
1988, Pages 51-81.

[4] EMC TimeFinder Product Description Guide, 1998, EMC Corporation,
http://www.emc.com/products/product_pdfs/pdg/timefinder_pdg.pdf

[5] Hitachi ShadowImage, June 2001,
http://www.hds.com/pdf/shadowimageR6.pdf

[6] Mellish, B., Blazek, V., Beyer, A., and Wolatka, R. Implementing ESS Copy
Services on UNIX and Windows NT/2000. Feb. 2001, IBM.

[7] McAuley, D., Pate, A., Black, I., Bueffel, V., Chana, B., Docherty, G.,
Leplaideur, D., Nel, W., IBM RAMAC Virtual Array, July 1997, IBM

270

[8] “StorageTek™ SnapShot Software”
http://www.storagetek.com/products/software/snapshot/

[9] Brown, K., Katcher, J., Walters, R., Watson, A., SnapMirror and SnapRestore:
Advances in Snapshot Technology,
http://www.netapp.com/tech_library/3043.html, Network Apppliance,
Inc.

[10] Gibson, G.A., R. Van Meter, "Network Attached Storage Architecture,"
Communications of the ACM, Vol. 43, No 11, Nov., 2000

[11] "Object Based Storage Devices: A Command Set Proposal,"
http://www.nsic.org/nasd/final.pdf Nov. 1999

[12] Menon, Jai. “A performance comparison of RAID-5 and log-structured arrays”
Proceedings of the Fourth IEEE International Symposium on High Performance
Distributed Computing, 1995. p.167-178.

[13] Chervenak, A., Vellanki, V., Kurmas, Z., “Protecting File Systems: A Survey of
Backup Techniques”, Proceedings Joint NASA and IEEE Mass Storage
Conference, March 1998.

[14] EMC TimeFinder, 2000, EMC Corporation,
http://www.emc.com/products/product_pdfs/ds/timefinder_l700-4.pdf

[15] Pate, A., Vaia, C., Todd, J., and Aigner, H. Implementing DSMSdss SnapShot
and Virtual Concurrent Copy, June 1998, IBM

[16] Blunden, M., Bergum, S., Dovidauskas J., and Vaia, C. Implementing ESS Copy
Services on S/390, Dec. 2000, IBM.

i Or tracks and volumes for zSeries; we focus on open systems.

271

Locating Logical Volumes in Large-Scale Networks
Mallik Mahalingam, Christos Karamanolis, Magnus Karlsson, Zhichen Xu

Hewlett Packard Labs
1501 Page Mill Rd, Palo Alto CA 94304

{mmallik, christos, karlsson, zhichen}@hpl.hp.com

Abstract
Storage is increasingly becoming a commodity shared in global scale, either within the infra-
structure of large organizations or by outsourcing to Storage Service Providers. Storage re-
sources are managed and shared in the form of logical volumes; that is, virtual disks that aggre-
gate resources from multiple, distributed physical devices and storage area networks. Logical
volumes are dynamically assigned to servers according to a global resource utility model.

This paper focuses on the problem of locating and accessing logical volumes in very large
scale. Our goal is to devise mechanisms that are least intrusive to the existing Internet infra-
structure. Two methods are proposed, based on DNS name resolution and BGP routing, respec-
tively. The former is based on the current DNS protocols and infrastructure; the latter requires
extensions to the existing BGP protocols. The two approaches are evaluated by means of simu-
lations, based on realistic workloads and actual Internet topology. It is shown that the simpler
and less intrusive DNS-based approach performs sufficiently well, for even small caches on the
clients.

1 Introduction

Storage Service Providers (SSP) such as ScaleEight [1] and StorageNetworks [2] pro-
vide network-based storage solutions for customers that wish to outsource some or all
of their data storage and its management. They provide a global storage infrastructure
that enables their customers to create, manage and distribute large sets of data across
multiple geographic locations.
Clients access such a global storage service in one of two ways. First, directly by means
of traditional file system APIs, e.g., through NFS mount-points. These clients are typi-
cally hosts that execute application services for the organizations that outsource storage
to the SSP. Second, by means of Content Delivery Networks (CDNs) [3, 4], which rep-
licate certain types of the data (originating from the SSP) closer to the edge of the net-
work. We envision that in future storage services, the borderline between SSPs and
CDNs will be blurred, as content will be dynamically created and stored at the edge of
the network. The emerging technologies for distributed application services [5, 6] and
peer-to-peer CDNs [7] point in that direction. Throughout this paper, we use the term
clients to refer to both these classes of clients.
Typically, the infrastructure of an SSP consists of a pool of storage resources, such as
disks, disk arrays and Storage Area Networks (SANs), as well as compute resources
(servers) for providing access to the storage. This infrastructure is physically distrib-
uted across multiple geographic locations. SSPs may own their own Data Centers, or
their resources may be hosted at Internet Data Centers (IDCs), such as those of Exodus
[8] and Qwest [9]. Moreover, we anticipate that, in the future, storage service providers

 272

will not necessarily own their own physical resources. Instead, their infrastructure will
be provided by on-demand aggregation of resources from multiple disparate data cen-
ters, following the principles of a resource utility model [10, 11].

Even today, the infrastructure of SSPs and big corporations consists of many, heteroge-
neous and distributed physical storage resources. In this context, logical volume man-
agers are used in order to simplify the management and facilitate the use of diverse re-
sources. Logical volumes provide an abstraction for aggregating storage resources
spread across multiple disks (that are attached to the same server or the same SAN) to
appear as a single virtual storage device [12]. Data is organized within the boundaries
of the logical volumes. Data on volumes are accessed through one or more servers that
mount that volume. The data may be organized in the form of a file system or a data-
base. To keep the discussion simple, in the rest of the paper, we will refer to data as
files.

Clients access a volume by going through the corresponding file server, which coordi-
nates all accesses via a file system API. When a client requests access to a file (per-
forms a lookup), a file-handle, which uniquely identifies the file in the system, is re-
turned back to the client. This file-handle contains a Volume Identifier (VID) that refers
to the logical volume where the file is physically stored [13, 14]. Files accessed by a
client may be spread across multiple logical volumes. Therefore, for every file access,
the client must resolve the location of a file server that “owns” the logical volume
where the file resides.

In a resource utility model, the mapping of logical volumes to physical resources and
their assignment to file servers can be dynamic. Therefore, a key problem is how to
provide efficient and scalable mechanisms for locating a logical volume and its custo-
dian file server. The system model we assume for our discussion is outlined in section
2. In section 3, we propose a mechanism by which file servers can locate the logical
volumes that they are responsible for. Sections 4 and 5 introduce two mechanisms for
resolving the identity of a server that provides access to a volume. The main idea be-
hind the proposed solutions is to exploit well-understood mechanisms, with proven
scalability in the Internet, and adapt them for locating volumes in very large scale. Our
aim is to use existing services (e.g., DNS), with no or minimal changes to the existing
infrastructure. The two approaches are evaluated in section 6, using simulation based
on both real and synthetic workloads, as well as real Internet topology information.
Section 7 discusses related work and section 8 concludes the paper.

2 System overview

The infrastructure of an SSP resembles any other network in the Internet. We assume it
is divided into a number of Zones, each with a unique identifier, Z-ID. Each Zone con-
sists of one or more Autonomous Systems (AS) and each Autonomous System consists
of a number of Autonomous System Regions (ASR). An ASR representative maintains
a database that contains information on the logical volumes within its region and their
assigned servers. By organizing the system this way, we uniquely identify any logical
volume by a Volume identifier (VID), using the convention “Volume-ID.ASR-ID.AS-
ID.Zone-ID”.

 273

File servers typically retrieve their logical volume assignment by interacting with an
ASR representative. The volume assignments may be dynamic to accommodate system
reconfiguration, fluctuating demand or changing workloads. Automating the resource
management in such environments is the focus of several current research projects [10,
11, 15].

When a client requires access to a file, it performs a lookup by sending a lookup re-
quest to the file server that hosts the logical volume where the parent directory of the
file resides. The file server performs lookup locally on the parent directory and returns
the file handle corresponding to the file. Note, that the volume (and server) of the par-
ent directory, where the file handle is constructed, and the volume of the file itself may
not be the same, as it is the case in systems such as Archipelago [16] and DiFFS [14].
The file-handle contains a Volume Identifier (VID) that refers to the logical volume
where the file is physically stored. In order for the clients to access the file, they must
resolve the VID and locate the file server that “owns” the corresponding logical vol-
ume.

3 Assignment of logical volumes to servers

When a file server comes online, it sends out a request identifying itself, asking for
logical volumes that it is responsible for. This functionality is implemented using the
DHCP protocol [17]. When an ASR representative within the vicinity of the file server
receives the request, it locates the list of logical volumes that the requestor is responsi-
ble for and responds back supplying the list to the server. The response contains the
configuration information of the logical volumes. For example, in an IP-based SAN,
the response may contain Logical Unit Numbers (LUN) and their corresponding target
IP addresses, along with other information such as whether a logical volume is stripped,
mirrored, etc. The assignment of logical volumes may be pre-configured via storage
management tools or may be dynamically assigned by an ASR representative upon re-
ceiving the request. Once an assignment is made, the representative for the ASR up-
dates its database to reflect the new state of server-to-volume assignment. These as-
signments can be dynamically changed to cater for various system conditions such as
file server utilization, load balancing, locality, etc. Any reassignment of logical vol-
umes affects only the database of a specific ASR and leaves the rest of the mapping in
the system intact.

In very large systems following the resource utility model, we cannot assume that file
servers can reach ASR representative via DHCP. Two solutions can be applied in such
environments: 1) the file server is pre-configured with a set of logical volumes; 2) the
file server is configured with the identity of an ASR representative (not necessarily of
its local ASR) which it should contact to retrieve its volume assignments.

4 Logical volume discovery by clients using DNS

In this approach, each Zone, AS and ASR has one or more designated representatives,
which, in practice, are part of the existing DNS infrastructure (authoritative servers)
[18]. The root server of the SSP contains information on all zone representatives. Every
zone representative maintains a database with all the AS representatives within its zone.

 274

In the same way, an AS representative maintains information about all ASR representa-
tives within that AS.

root.myssp.com

Z2

AS2

FS1 FS2 FS3

1 8 7 Z-ID AS-ID AR-ID LV-ID

1.1.2.2 -> FS1
ASR1

8.1.2.2 -> FS2

7.1.2.2 ->FS3

Volume Identifier (VID) Mapping Database

Zone representatives
Database

AS representatives
Database

ASR representatives
Database

Z1

C1

DNS resolution path for
“Vol7.ASR1.AS2.Z2.root.myssp.com”

Figure 1: VID resolution using DNS

For a client to access a file, it has to first retrieve a file handle via a lookup process. The
client then needs to locate the file server that corresponds to the Volume Identifier
(VID) in the file handle. The identity of the server is resolved by exploiting typical
DNS name resolution [18]. For example, when a client C1 receives a file handle that
contains VID 7.1.2.2, it constructs a fully qualified domain name
“Vol7.ASR1.AS2.Z2.root.myssp.com” based on the numerical VID contained in the
file handle and the root domain name of the SSP. The root domain name is obtained
during the file system mount time The client then resolves this (artificial) domain name
through a normal DNS resolution process, as depicted in Figure 1. This process does
not require any changes to the existing DNS infrastructure. However, the root server of
the SSP needs to be configured to respond to the domain suffix “Z2” by specifying the
authoritative representatives for that part of the domain suffix. When a client’s requests
land at the representative for an ASR, the address of the file server that corresponds to
the VID is returned. Results of this query can be cached at the client for improved per-
formance.

Various optimizations are possible in order to speed up the resolution process. One
possibility is to have file servers resolve the logical volume mapping, cache the infor-
mation locally and return the mapping information when a file handle needs to be re-
turned back to the client. This cached information could significantly reduce the net-
work traffic especially when many clients reference the same logical volume. Cached
information can be kept loosely consistent with the actual mapping by performing peri-
odic checks. Also, resolution at the file server can be performed in an asynchronous
fashion to hide any extra delays. Invalid references can arise due to volume reassign-

 275

ments or the non-availability of file servers. In this case, clients resort back to the nor-
mal resolution process.

Clients can also contact a local DNS server and have that server perform the logical
volume to file server mapping. Typically, employing optimizations like this has proven
to produce higher cache hit ratio [19] in resolving domain names at the client.

5 Logical volume discovery using suffix-based routing

This section introduces an alternative approach for clients to retrieve the custodian file
server of logical volumes, called Volume Identifier Routing Protocol (VIRP). Given a
VID, VIRP routes the request for VID resolution to the corresponding ASR representa-
tive taking the shortest ASR (or AS) path and returns the address of the corresponding
file server to the client.

VIRP is based on suffix reachability that is similar to prefix-based routing performed
using BGP [20]. There are two variations of the protocol. In the first variation, each
ASR representative advertises itself to its neighboring VIRP routers. These advertise-
ments are propagated further to other VIRP routers. For a particular VIRP router, rout-
ing advertisement of an ASR representative indicates the shortest path towards that
ASR representative.

ASR Representative

BGP Peer connectivity

C1

Clients C1, C2, C3

ASR4

ASR5

ASR1

ASR2ASR3

C1

C2

Next Hop
ASR 5
ASR 3
ASR 3
ASR 5

Destination
ASR 1
ASR 2
ASR 3
ASR 5

Destination
ASR 1-5

Next Hop
ASR 4

Routing path for resolving VID

Figure 2: Example showing VIRP advertisements and routing VID resolution

For example, Figure 2 shows the routing table at VIRP router ASR4. The routing table
contains the next hop address for other ASR representatives following the shortest path.
As shown earlier in section 2, VID contains a Volume ID, an ASR ID, an AS ID, and a
Zone ID. Clients resolve VID by routing the request to the ASR representative corre-
sponding to the ASR part of the VID. The routed request takes the shortest path leading
to the target region. For example, a client C1 that wishes to resolve a VID that belongs

 276

to ASR2 will first route to ASR4 and then take ASR3 as the following hop and route to
ASR2. In VIRP, the clients receive routing advertisements but do not perform any ad-
vertisements.

Alternatively, to reduce the size of VIRP routing tables, the advertisement can be per-
formed at the AS level. We introduce a representative for each AS to receive requests
from clients and direct them to ASR representatives. The AS representatives advertise
themselves as it was done in the previous case. Once a client request is routed to an AS
representative, the latter can forward the request to an ASR representative by perform-
ing a local lookup using the ASR-ID. The respective ASR representative responds to
the client with the address of the file server using the volume part of the VID. This
greatly reduces the number of entries kept in the routing tables but it requires defining
additional protocols for interaction between AS and ASR representatives. To give the
readers an idea of the savings on routing table size, assume that an ASR corresponds to
a network prefix on the Internet. There are 150K unique prefixes whereas the number
of AS on the Internet is on the order of 10K.

There are several ways to deploy this type of infrastructure. One way is to reuse the ex-
isting BGP routing infrastructure by adding new protocols. A more practical way is to
construct an overlay network to build this infrastructure [21]. Such an overlay network
can be constructed at application level for easy deployment.

6 Evaluation

The performance of the proposed DNS-based and BGP-based approaches is evaluated
by means of simulations. The simulation model is based on an Autonomous System
(AS) view of the actual Internet topology as of October 2001, and a real-world, glob-
ally distributed workload. We chose this to be a web workload for two reasons. First,
we believe that Content Delivery Networks will be one of the main applications of a
globally distributed file system, and secondly, it is one of the few workloads that today
have millions of globally distributed clients. The metric used to compare the two ap-
proaches is client perceived latency in resolving a VID.

6.1 Simulation Methodology
Our simulation model uses three sets of inputs in order to calculate the client perceived
latency for the approaches: An Internet topology, a set of volumes and their locations,
and finally the location of the clients and a list of chronologically ordered accesses to
these volumes. The input parameters are all summarized in Table 1.

The Internet topology was generated using BGP routing table information obtained
from a leading ISP, Telestra.net [22], during October 2001. From these routing tables
an undirected graph is constructed, in which nodes represent Autonomous Systems and
edges represent their peering relationship. The generated graph contains approximately
13.000 nodes and 150.000 edges and we assume a uniform edge cost. The distance be-
tween two nodes in the topology is measured in number of AS-level network hops on
the shortest path between those nodes. The placement of the DNS servers in this Inter-
net topology is decided in the following way. We generated a list of nodes sorted in de-
scending order of their fan-out (number of nodes that are just one hop away from one

 277

specific node). The node that has the highest fan-out is selected to be the representative
for “root” and removed from the list. Next, the set of zone representatives are picked
from the top of the list and then are removed from the list. The AS and ASR representa-
tives are chosen in the same way.

Table 1: The main parameters of the experimental platform and their corresponding val-
ues. The shaded parameters are the ones that we vary in the experiments.

 Parameter Value

Topology Distribution Part of real Internet

Number 20,000 or 80,000
Volumes

DNS nodes 4/10/5/100 (Z/AS/ASR/Volumes) or 4/40/5/100

Number 90,000 or 1 million
Objects

Distribution Sequential or Random

Number 5,400 Client clusters

Distribution According to real AS location Clients

VID access pattern WorldCup98 or Random

The object references were obtained from web logs of the World Cup Soccer 1998
event [23]. The logs contain references to nearly 90K unique files. These files are
mapped on 20K and 80K volumes, respectively for the two scenarios. While clearly the
World Cup site would not in reality be located on this many volumes, a client would
not access solely one site. Instead a client would be accessing many different volumes
of various sites. Our client workload can thus be seen to represent a widely scattered
surfing pattern that is close to a worst-case scenario for the DNS approach. The place-
ment of objects to volumes is done in two ways: sequential and random. For each of
these algorithms, N files (where N = unique files / no of nodes) need to be placed on
each volume. For the sequential algorithm, the first N unique files encountered in the
web log are placed on node 1.1.1.1. The following N unique files are then placed on
node 2.1.1.1, and so on. As more frequently accessed files tend to show up earlier in the
web log, this algorithm will place popular files closer to each other. The random algo-
rithm, on the other hand, places the first N files encountered in the web log on a ran-
dom node, the next N files on another random node, and so on.

The clients’ locations and access patterns were also obtained from the 98 World Cup
logs. These contain accesses made by roughly 2.6 million clients over the course of 90
days (includes accesses made 30 days prior and 30 days after the event). To be able to
assign these clients to the AS node they actually resides on in reality, we developed a
program that converts IP address of a client to the corresponding AS ID. This clustering
generated about 5.4K unique client clusters that are located in the same number of
unique ASs.

 278

We use two different client access traces to evaluate the proposed schemes: World-
Cup98 and random. The former is taken straight from the client accesses of the World
Cup log; the latter is a uniformly random VID accesses. In the World Cup log, all cli-
ents in one AS access, on the average, 1K unique objects, while in the random one, the
simulation is terminated after 2K unique objects are referenced by each AS.

To measure the client perceived latency, 20% of the ASs were randomly chosen and
used in the simulations. They represent 500K clients generating close to 20% of the to-
tal client accesses. For each AS, a list of objects that the clients in that AS accessed is
generated. In our model, every server (DNS server or VIRP router) that is queried adds
to the client perceived latency. We express the client perceived latency in terms of the
number of AS hops involved. This has been shown to be a fair measure of latency [24].
Network contention is not taken under consideration. For the simulation, we have used
simple LRU caching at the clients to store the resolved VIDs. The impact of the size of
this cache and all other shaded parameters in Table 1 are examined in the next section.

6.2 Performance Results
The initial intuition was that the DNS approach should have a higher client perceived
latency than the VIRP approaches, when the VID lookup cache size is small and/or
when the locality of VID lookups is poor. In this section, we will investigate how much
locality the DNS approach needs in order to be comparable to the VIRP approaches,
and provide a rough estimate on how many VID lookups need to be cached at each cli-
ent for this to be achieved.

0

10000

20000

30000

40000

50000

0 32 64 12
8

25
6

51
2

10
24

20
48

Client cache size (# of entries)

Av
g.

 C
lie

nt
 p

er
ce

iv
ed

 la
te

nc
y

(in
 A

S
 h

op
s)

DNS

VIRP - ASR

VIRP - AS

0

10000

20000

30000

40000

50000

0 32 64 12
8

25
6

51
2

10
24

20
48

Client cache size (# of entries)

Av
g.

 C
lie

nt
 p

er
ce

iv
ed

 la
te

nc
y

(in
 A

S
 h

op
s)

DNS
VIRP - ASR
VIRP - AS

(a) Sequential object distribution (b) Random object distribution

Figure 3: Results for the DNS, VIRP-ASR and VIRP-AS approaches. Number of volumes:
20,000. Number of objects: 90,000. Client access pattern: WorldCup98.

Figure 3a shows the results for the DNS, VIRP-ASR and VIRP-AS approaches using
sequential object distribution. In the figure, the x-axis represents the various client
cache sizes and the y-axis represents the average client perceived latency due to the
VID lookup process. VIRP-ASR has the lowest client perceived latency as it requires
only one lookup message and it traverses the shortest path between the client and the
server. For VIRP-AS, there is a potential for one more message, thus the slightly worse

 279

performance. The most interesting point in this graph is that the DNS approach per-
forms well even for small client cache sizes. For the sequential object distribution of
Figure 3a it starts to perform well at 32 entries, but for the random case in Figure 3b,
this point is only increased to 256 entries. For a straightforward implementation of the
client cache, this translates to a modest 1KB and 8KB of memory space, respectively.

0

10000

20000

30000

40000

50000
0 32 64 12
8

25
6

51
2

10
24

20
48

Client cache size (# of entries)

Av
g.

 C
lie

nt
 p

er
ce

iv
ed

 la
te

nc
y

(in
 A

S
 h

op
s)

DNS
VIRP - ASR
VIRP - AS

0

10000

20000

30000

40000

50000

0 32 64 12
8

25
6

51
2

10
24

20
48

Client cache size (# of entries)

Av
g.

 C
lie

nt
 p

er
ce

iv
ed

 la
te

nc
y

(in
 A

S
 h

op
s)

DNS
VIRP - ASR
VIRP - AS

 (a) Sequential object distribution (b) Random object distribution

Figure 4: Results for DNS, VIRP-ASR and VIRP-AS approaches. Number of volumes:
80,000. Number of objects: 90,000. Client access pattern: WorldCup98.

Figure 4 shows the effects of what happens if the number of volumes is increased four
times to 80,000 volumes. As the locality will be poorer than before, we would expect
the DNS approach to perform even worse. But for the sequential object distribution it
hardly matters for clients with a cache, as the DNS approach performs as well as be-
fore. However, for the random object distribution the cache size required for DNS to
become comparable to VIRP-AS is larger. It is now around 2K entries, translating into
64KB of memory space.

0

10000

20000

30000

40000

50000

0 32 64 12
8

25
6

51
2

10
24

20
48

Client cache size (# of entries)

Av
g.

 C
lie

nt
 p

er
ce

iv
ed

 la
te

nc
y

(in
 A

S
 h

op
s)

DNS
VIRP - ASR
VIRP - AS

0

10000

20000

30000

40000

50000

0 32 64 12
8

25
6

51
2

10
24

20
48

Client cache size (# of entries)

Av
g.

 C
lie

nt
 p

er
ce

iv
ed

 la
te

nc
y

(in
 A

S
 h

op
s)

DNS
VIRP - ASR
VIRP - AS

(a) Sequential object distribution (b) Random object distribution

Figure 5: Results for DNS, VIRP-ASR and VIRP-AS approaches. Number of volumes:
20.000. Number of objects: 1 million. Client access pattern: Random.

The last set of experiments was designed to stress the approaches even further to see
how they hold up for a random client access pattern with a larger number of objects.

 280

Few workloads will have access patterns that are truly random, however, this will pro-
vide us with a worst-case scenario for the approaches. Figure 5 and 6 show the results
for the random client-access pattern when the number of objects is 1 million. It can be
seen that the VIRP approaches perform better than the DNS approach for small sizes of
caches, but their performance remains more or less unaffected by the client cache size.

0

10000

20000

30000

40000

50000
0 32 64 12
8

25
6

51
2

10
24

20
48

Client cache size (# of entries)

Av
g.

 C
lie

nt
 p

er
ce

iv
ed

 la
te

nc
y

(in
 A

S
 h

op
s)

DNS
VIRP - ASR
VIRP -AS

0

10000

20000

30000

40000

50000

0 32 64 12
8

25
6

51
2

10
24

20
48

Client cache size (# of entries)

Av
g.

 C
lie

nt
 p

er
ce

iv
ed

 la
te

nc
y

(in
 A

S
 h

op
s)

DNS
VIRP - ASR
VIRP - AS

(a) Sequential object distribution (b) Random object distribution

Figure 6: Results for DNS, VIRP-ASR and VIRP-AS approaches. Number of volumes:
80.000. Number of objects: 1 million. Client access pattern: Random

This is due to the random accesses to volumes. There is little reuse of VIDs as the
lookups are completely random, thus there is also little use of the client cache for stor-
ing individual VID lookups. However, for the DNS approach there will still be access
locality for the entries that store the zone, AS and ASR lookups as there are far lower
number of these in the system than volumes. This explains why DNS benefits from a
larger cache but not the VIRP approaches for this experiment. Thus, even for modest
cache sizes, the performance of the DNS approach is comparable to that of VIRP.

6.3 Summary of simulation results
Our simulation shows that VIRP with ASR level aggregation outperforms all other ap-
proaches we compared against. The drawback with the VIRP approaches is that they
require protocol modifications to the existing routing infrastructure. The DNS ap-
proach, on the other hand, can be deployed on existing infrastructure. Its performance
is comparable to VIRP for reasonable client cache sizes even when the locality is poor.
For reasonable cache sizes, the type of the object distribution has lesser effect on the
client perceived latency. In general, we believe that the deployment of the DNS ap-
proach is preferable as its performance is comparable to the VIRP approaches, while
using existing infrastructure.

7 Related Work

Existing distributed storage systems, such as AFS [13, 14], are designed for deploy-
ment in campus environments. These systems maintain a volume location database
(VLDB) to track the servers in the system where volumes reside. For example, AFS
maintains a VLDB for every “cell” of the system. The VLDB is typically replicated on

 281

two or more Volume Location Servers, for availability reasons. An AFS client within a
cell is manually configured with a list of Volume Location Servers that it can contact to
resolve the volume location. This is not a feasible choice for large-scale geographically
dispersed networks such as the Internet. Also, AFS does not provide any mechanisms
by which file servers can locate the logical volumes they are assigned to; this informa-
tion is hard-wired in the servers’ configuration.

Volume managers such as that of Veritas [25],[26] and storage virtualization systems
[27] aggregate multiple, disparate physical storage resources using the volume abstrac-
tion. These solutions are applicable to small-scale systems, a single SAN and a single
data center. Neither they provide service for hosts in the network to discover their as-
signments nor they allow clients to resolve the owners of logical volumes.

Techniques used by SSPs such as Scale8 [1] are not published. Karamanolis et al. [14]
describe mechanisms by which a file server keeps limited information about the peers
that the logical volumes under its custody have references to. Their proposal is primar-
ily an optimization of our DNS approach, where caching is used at the file server.

8 Conclusion

Storage is increasingly becoming a commodity resource shared in global scale. The
emerging business model of outsourcing storage (or its management) to third-party ser-
vice providers amplifies this trend. In this context, storage resources are virtualized and
shared by means of logical volumes. This paper addresses the problem of locating and
accessing logical volumes in global infrastructures, as those of Storage Service Provid-
ers or large corporations.

The paper briefly describes ways to assign computational resources (servers) to vol-
umes and how this mapping is performed in various system models. We then focus on
mechanisms for clients to locate and access logical volumes, in a very large, dynamic
infrastructure. That is, locate the servers that provide access to specific volumes. In en-
vironments of the scale and volatility required in a “resource economy”, a centralized
volume location database does not provide a satisfactory solution. First, it does not
scale sufficiently (e.g., for tens of thousands of volumes); second, we cannot expect a
centralized “knowledge” of the entire system’s configuration.

The motivation for the work presented in this paper was to investigate solutions that are
based on well-understood and provably scalable mechanisms. In that spirit, two ap-
proaches are proposed to address the problem. The first is based on existing DNS infra-
structure and protocols to resolve hierarchical volume identifiers. The second proposes
extensions to existing BGP routing protocols to efficiently locate host servers of vol-
umes.

Our initial assertion was that the BGP-based approach would perform better than the
DNS approach. However, experimental results based on simulations indicate that even
for modest volume-id caching on the clients, the benefits of BGP are negligible. More-
over, the DNS approach is based completely on existing protocols and it is not intrusive
to the existing infrastructure. So, its deployment would be straightforward. On the other
hand, the BGP approach requires extensions to existing protocols and routing table

 282

management, making it much harder to be deployed in a real environment. The latter is
not justified by the marginal performance benefits this approach offers.

9 References
[1] ScaleEight, http://www.scale8.com/.

[2] StorageNetworks, http://www.storagenetworks.com/.

[3] Akamai, http://www.akamai.com.

[4] DigitalIsland, http://www.digitalisland.com.

[5] Ejasent, http://www.ejasent.com.

[6] Zembu, http://www.zembu.com.

[7] J. Kangasharju, J. W. Roberts, and K. W. Ross, “Object Replication Strategies in Content
Distribution Networks,” presented at 6th Web Caching and Content Distribution Work-
shop, Boston, MA, USA, 2001.

[8] Exodus, http://www.exodus.com.

[9] Qwest, http://www.qwest.com.

[10] K. Appleby, S. Fakhouri, L. Fong, G. Goldszmidt, M. Kalantar, S. Krishnakumar, D. P.
Pazel, J. Pershing, and B. Rochwerger., “Oceano - SLA Based Management of a Comput-
ing Utility,” presented at Proceedings of the 7th IFIP/IEEE International Symposium on
Integrated Network Management, 2001.

[11] J. Wilkes, J. Janakiraman, P. Goldsack, L. Russell, S. Singhal, and A. Thomas, “Eos - The
Dawn Of The Resource Economy,” presented at HotOS-VIII Workshop, Schloss Elmau,
Germany, 2001.

[12] D. Teigland and H. Mauelshagen, “Volume Managers in Linux,” presented at FREENIX
Track: 2001 USENIX Annual Technical Conference, Boston, Massachusetts, USA, 2001.

[13] J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satyanarayanan, R. Sidebotham, and M.
West, “Scale and Performance in a Distributed File System,” ACM Transactions on Com-
puter Systems, vol. 6, pp. 51-81, 1988.

[14] C. Karamanolis, L. Liu, M. Mahalingam, D. Muntz, and Z. Zhang, “An Architecture for
Scalable and Manageable File Services,” Hewlett-Packard Labs, Palo Alto, Technical Re-
port HPL-2001-173, July 2001.

[15] IBM, “Autonomic computing,” : http://www.research.ibm.com/autonomic.

[16] M. Ji, E. W. Felten, R. Wang, and J. P. Singh, “Archipelago: An Island-Based File System
for Highly Available and Scalable Internet Services,” presented at 4th USENIX Windows
Systems Symposium, 2000.

[17] DHCP, http://www.dhcp.org.

[18] DNS, http://www.dns.net/dnsrd/.

[19] E. Sit, “Study of caching in the Internet Domain Name System,” Massachusetts Institute
of Technology, May 2000., 2000.

[20] Y. Rekhter, T. Li, and M. 1995, “A Border Gateway Protocol 4 (BGP-4) - RFC 1771,” in
Request for Comments: 1771, 1995.

 283

[21] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz, and J. Kubiatowicz., “Bayeux: An
Architecture for Scalable and Fault-tolerant WideArea Data Dissemination,” presented at
In Proc. of the Eleventh International Workshop on Network and Operating System Sup-
port for Digital Audio and Video (NOSSDAV 2001), 2001.

[22] Telstra, “Raw BGP Data,” http://kahuna.telstra.net/bgp2.

[23] Worldcup98, “Worldcup98 soccer event - Web logs,” :
http://ita.ee.lbl.gov/html/contrib/WorldCup.html.

[24] P. Radoslavov, R. Govindan, and D. Estrin, “Topology-Informed Internet Replica Place-
ment,” presented at 6th Web Caching and Content Distribution Workshop, Boston, MA,
USA, 2001.

[25] VERITAS, “Veritas Volume Manager,” http://www.veritas.com.

[26] M. Hasenstein, “The Logical Volume Manager (LVM),”
http://www.sistina.com/lvm_whitepaper.pdf.

[27] StorageApps, “SANLink,” http://www.hp.com/products1/storage/san/sanlink/index.html.

285

Building a Massive, Distributed Storage Infrastructure at Indiana
University

_

Anurag Shankar, Gerry Bernbom
University Information Technology Services

Indiana University
2711 East Tenth Street
Bloomington IN 47408

ashankar, bernbom@Indiana.Edu
tel: +1-812-855-9255
fax: +1-812-855-8299

Abstract
Anticipating an onslaught of data in research, administrative, and academic computing,
Indiana University (IU) undertook in 1998 the ambitious task of architecting a massive,
distributed storage infrastructure to meet its long-term storage needs. The task, now
nearly complete, has resulted in the institution of the High Performance Storage System
(HPSS), a hierarchical storage management (HSM) system, augmented by the Distributed
Computing Environment Distributed File System (DCE DFS) acting both as a file system
front end to HPSS and as a common file system (CFS) for IU campuses. Using
gateways, IU's distributed storage system today currently offers a user on its eight
geographically distributed campuses a capacity for securely storing and accessing nearly
200 Terabytes of data from any networked (Windows, Mac, or Unix/Linux) desktop
equipped with a web browser.

HSM systems such as HPSS have traditionally been used by high-end users at large
research labs (for example Los Alamos, Livermore, Sandia, Brookhaven National Labs in
the U.S. and at CERN in Europe), at supercomputer centers (for example the San Diego
Supercomputer Center), and at government agencies such as NASA. IU’s installation is
unique in two respects. It is the first production HPSS that is geographically distributed
over a wide area network (WAN). Second, we have made available a high-end storage
system in an academic setting not only to traditional, high-performance research users
(for example astronomers, physicists, chemists, etc.), but also more generally (to users in
economics, fine arts, apparel design, music, libraries, life sciences, etc.).

1 Re-centralization of Storage
Why build a centralized data storage system when typical personal computer hard disks
today offer tens of gigabytes of storage at a very low (acquisition) cost? While it is
certainly true that the availability of cheap, abundant personal storage capacity in the
early nineties started a trend toward de-centralization of storage (from a highly
centralized mainframe era), this trend is slowing. Researchers on university campuses a
decade ago found to their delight that, for the most part, they were able to acquire
(through grants) the resources necessary to store their data locally, on personal
workstations or on servers in their offices or in departments. However, their initial
enthusiasm soon dissipated when the high, after-purchase cost and effort of ensuring the
integrity, protection, and long-term storage of data became apparent. As hard disk drive
sizes have swelled to gigabytes and then to tens of gigabytes, backups have become
increasingly costly, even painful. Also, enterprise-wide, the need for protecting

286

institutional intellectual assets (in the form of research and other data created by users)
has grown progressively stronger over the past decade, forcing many institutions to
reconsider centralizing data storage.

2 Infrastructure Choices
The design of a storage infrastructure ultimately depends on a number of factors, chief
among which are a) the amount of data to be stored, b) user data access patterns, and c)
the available budget. With disk prices continuing their free fall, the storage industry
seems to have agreed on storage area networks (SANs) to provide redundantly configured
disk-based storage. However, SANs or alternatives that utilize spinning disks alone are
simply not cost effective in building petabyte class data repositories at the present time.
This leaves us with tapes and with HSM technology. The largest data repositories in the
world are thus built using HSM systems. The tape to disk price ratio per megabyte of
storage (especially at the high end) still favors tape over disk.

In a traditional HSM system, data bits are migrated seamlessly (from a user's perspective)
from finely tuned, fast but (relatively) small disk caches (ours is a TB) to massive tape
libraries (again, ours offers 200TB) when unused for a period of time. Metadata resides
on disk forever (and is backed up carefully and redundantly). The user pays a price for
having easy access to terabytes of data in the form of tens of seconds to possibly minutes-
long delay in retrieving data bits that have migrated to tape. However, this appears to be
acceptable for the majority of academic users who are happy to have access to massive
storage capacities normally outside the scope of their individual or departmental budgets.

Armed with this information, we began looking for a HSM solution that provided a)
long-term vendor viability, b) excellent hardware and software support, c) scalable
performance, d) ease of access (preferably via a file system), and e) the ability to
distribute software and hardware components geographically. At the conclusion of our
request for proposal (RFP) process, only one contender remained, namely the High
Performance Storage System. The HPSS[1] is the result of a fruitful collaboration
between a number of government labs, academia, and IBM. It is not a vended solution in
the usual sense; one pays instead a membership fee to join the HPSS collaboration. Each
member gains access to the source code and is free to modify it within the mechanisms
provided by the collaboration. Excellent software support is also included. Another
attractive feature of HPSS is its ability to present a file system interface to data stored on
tapes via DCE DFS[2], a distributed, scalable and secure file system.

At the high end, campus projects needing massive data storage at IU included candidates
such as next generation high-energy physics experiments, with the potential to generate
petabytes of data each year. With possible analysis times extending to decades, protection
against software and hardware obsolescence is paramount. We felt that HPSS fit these
needs and our environment well, by giving us long-term control over our destiny. [HPSS
is also the HSM system of choice at some of the world's largest data repositories (for
example SDSC, Brookhaven National Labs, CERN, etc.).]

287

Finally, while a tape-based system is ideal for archiving large files (tapes perform best
when streaming), many campus users needed persistent, disk-based storage as well. In
the past, this need was met (though inadequately) by the Novell Netware file system. By
1999 however, the future of Novell itself was in question and the existing Novell
infrastructure was in urgent need of repair or replacement. With DCE DFS software
already installed for HPSS purposes, it was natural to use it in lieu of Novell. DCE DFS
is one of the most highly scalable and distributed file systems in use currently in the
industry, to deliver high-end, secure file service. However, since DCE DFS clients are
available only for a number of Unix flavors and for Windows NT4, it was clear that
appropriate gateway servers would be needed to extend DCE DFS to the pervasive base
of Windows and Mac desktops and servers on campus.

3 Building IU’s Distributed Storage System
Our service design included campus users (using their personal workstations or
departmental servers or our supercomputers) who either required massive, archival
storage and/or who needed traditional, disk-based storage. A major design goal for us
was also to provide storage ubiquitously, either via the web or via a file system front-end.
Though these methods do not provide the highest performance, they were targeted for a
non-savvy computer user due to the simplicity of use.

The majority of our users were located on two of IU’s eight campuses, namely IU
Bloomington (IUB) and IU-Purdue University at Indianapolis (IUPUI), located around
fifty miles apart in central/south-central Indiana. Since the intercampus bandwidth
(45Mbps) was insufficient to move massive amounts of data between campuses, we
decided to experiment distributing IU’s HPSS hardware and software across the two
campuses. While the metadata engine remained at IUB, the actual user data was to reside
where the user was located physically, either at IUB or at IUPUI. The idea was to use the
intercampus link efficiently, to carry metadata traffic only. Users were to access their
data over their local LAN at each campus via third party transfers. Extensive tests in
partnership with IBM validated the idea and the experiment transformed into the first
production instance of a remote HPSS mover at IUPUI in late 2000.

The file system front-end to HPSS is configured via “migrating” DFS servers. Data
placed into HPSS via DFS arrives first in the DFS server disk caches, and later migrates
to HPSS disk caches via a bi-directional DFS-HPSS link. The migrating DFS is thus a
dedicated, external subsystem to HPSS. Static (i.e. non-migrating) DFS was also
configured using separate DFS servers, with no link to HPSS, to provide the “Common
File System” (CFS) service to the masses (directly, via DFS clients, and via SMB,
Appleshare IP, and web gateways). Security for both HPSS and for CFS is provided
through DCE (based on Kerberos 5).

We configured our core HPSS on a dedicated IBM RS/6000 SP located at IUB. This
allows the eleven PowerPC “Silver” thin and wide SP nodes (which run core HPSS
servers, disk/tape movers and migrating DFS servers) to communicate over the IBM SP
switch at 130MB/s. Our supercomputer (another IBM SP) users are able to transfer data
to/from HPSS using an ASCEND router at better than 100MB/s. A terabyte of IBM’s

288

serial storage array (SSA) disk attached to the eleven nodes forms the HPSS and
migrating DFS disk caches. We use IBM’s Magstar (3590E) tape drives in an IBM 3494
tape library and Storage Technology Corporation’s 9840 “Eagle” tape drives in a STK
9310 tape library to store HPSS data at IUB. Remote HPSS disk and tape movers and a
DFS server are configured on an IBM H70 server at IUPUI in Indianapolis. We have
roughly 1TB of UltraSCSI RAID5 disk configured on the H70 as HPSS and migrating
DFS disk caches. A number of IBM’s Magstar drives inside an IBM 3494 tape library
are SCSI-attached to the H70 at IUPUI.

HPSS is accessed in a high-performance mode via especially written Unix clients or more
easily via FTP, DFS or via the web. We currently have around a thousand users
distributed across various IU campuses, with roughly 55TB of data stored in HPSS.

IU’s non-migrating DFS (or CFS) runs at IUB on several IBM’s low-end B50 servers
with IBM’s UltraSCSI RAID5 arrays. Five Sun E220R servers run Samba[3],
Netatalk[4], and Apache-SSL[5] servers which allow Win9x, Mac, and Linux users to
access DFS from any networked desktop. The gateways are accessed by users as a
single, round-robin DNS name. User authentication occurs securely (via modifications to
Samba, Netatalk, and Apache server code[6]) directly against DCE. This allows no name
space information to be maintained on the gateways, thus helping load balance and scale
the service up as appropriate, without user impact. The non-migrating DFS servers and
the gateways together form our CFS environment which is available to all campus users,
either as a mapped drive under Windows, an an Appleshare IP volume on Macs, via
smbmount or a native DFS client under Unix (or smbfs under Linux), and via the web.
We are serving roughly 25,000 CFS customers currently with 250GB of data stored and
backed up regularly.

4 Future
We are currently working in partnership with IBM to investigate developing an interface
between IBM’s high-performance general parallel file system (GPFS) and HPSS. This
could enable high-speed, parallel, file system based data transfers between Linux clusters
and HPSS (these clusters are currently served largely via low-performance NFS). We are
also expanding the HPSS infrastructure at our Indianapolis campus (to nearly 400TB
capacity) to support life sciences research and will start tests soon thereafter to mirror all
HPSS data in real time across i-light[7], a newly installed high-speed optical fiber
infrastructure between IUB and IUPUI. This should provide us with better protection
against a disaster at either site. Finally, CFS is being extended to the IUPUI campus and
will replace the local Novell infrastructure during 2002.

5 Conclusions
Indiana University is one of the few academic institutions to successfully anticipate and
to build an ambitious infrastructure to provide massive data storage to its users. Using
HPSS, a highly scalable and distributed hierarchical storage management system, along
with DCE DFS and SMB, AppleShare IP and web gateways, a campus user at IU can
store and access terabytes of data from their desktops. We have also found that it is

289

possible to implement and to offer a high-end storage system to the masses, with
significant cost savings over the long run.

We are happy to share our knowledge and experiences with anyone who is interested.[8]

References
[1] Information about the High Performance Storage System (HPSS) is available at the

website http://www.clearlake.ibm.com/hpss/.
[2] IBM’s DCE website: http://www.ibm.com/software/network/dce/. IBM’s Transarc

Labs DCE/DFS website: http://www.transarc.ibm.com/Product/.
[3] Samba project website: http://www.samba.org/.
[4] Netatalk project website: http://www.umich.edu/~rsug/netatalk/.
[5] Apache project website: http://www.apache.org/.
[6] Paul Henson’s mods for Samba/Netatalk/Apache are available at the URL

http://www.intranet.csupomona.edu/~henson/www/projects/.
[7] Indiana’s high-speed research network website: http://www.i-light.iupui.edu/.
[8] Information about IU’s distributed storage services is available at the URL

http://storage.iu.edu/. Our distributed storage services group website address is
http://www.indiana.edu/~dssg/.

291

High-density holographic data storage
with random encoded reference beam

_

Vladimir B. Markov
MetroLaser, Inc.

 18010 Skypark Circle, Suite 100
Irvine CA 92614

vmarkov@metrolaserinc.com
tel: +1-949-553-0688
fax: +1-949-553-0495

Abstract
Holographic technique offers high-density data storage with parallel access and high
throughput. Several methods exist for data multiplexing based on the fundamental
principle of volume hologram Bragg selectivity. We recently demonstrated that spatial
shift selectivity associated with a random (amplitude-phase) encoding of the reference
beam is an alternative method for high-density, high capacity data multiplexing. In this
report we show some characteristics of the random encoded reference beam hologram
selectivity1.

1 Introduction
Volume holographic memory allows for high throughput data storage and retrieval.
Different techniques for data multiplexing have been explored, including those based on
angular [2] and spectral [3] selectivity of volume holography, spatial encoding of the
reference beam [4] or a combination of these methods [5]. The combination of reference
beam phase encoding with spatial-shift multiplexing was shown to be an efficient
approach for high-density holographic information storage [6,7]. The correlation effects
at volume hologram recording and reconstruction with random encoded (speckled)
reference beam came out as the part of the analysis of the holographic laser beam
corrector [8]. A similar technique using a reference beam comprised of many plane
waves (or a spherical wave) was suggested and experimentally demonstrated [9]. In this
report some characteristics of volume hologram with random-encoded reference (RER)
beam are discussed.

2 Theoretical Analysis
In our analysis we consider a volume hologram recorded by a plane wave signal beam
So(r) and a RER-beam, Ro(r), with a divergence δθSP. By intersecting at an angle θo these
two beams form a hologram with average grating spacing Λ = λ/sin(θo), assuming an
incidence angle θRo = 0. In the first Born approximation, the diffracted beam amplitude
S(r), when reconstructed with RER-beam different from the recording one i.e. R(r) ≠
Ro(r), can be described as [10]:

∫∫∫ −π
−

δε=
V

3o2
o 'rd

'rr4
)]'rr(ikexp[

)'r(R)'r(k)r(S . (1)

Here)r(*
oR)r(oS)r(∝δε is the recording media permittivity modulation and V is the

volume of the hologram with thickness T. Eq. (1) is valid if T >> λ/(δθSP)2, i.e. exceeds
the longitudinal speckle size.

292

We introduce now the normalized diffracted beam intensity IDN(∆) as the parameter to
describe the selectivity properties of RER-beam hologram:

∫ ∫∫ ∫ ∫
∞+

∞−

∞+

∞−
⊥

⊥

=∆

⊥
⊥ ×

∆−×

 ∆=∆=∆
⊥

.qd)q(PTqdzdq
d

nikexp)q(P
d2
nikexp

I
)(I)(I 22

D
2

2
T

0

2

dh

o2
D

dh

2
o

)0(D

D
DN

rrrr
 (2)

Here the measured diffracted beam intensity
ID(∆) is normalized by its peak value at zero
shift ID(∆=0).

It follows from Eqn. (2) that any spatial
mismatch between the hologram and
reconstructing beam R(r) should result in a
decline of the diffracted beam intensity.
Figure 1 shows the fall-off in IDN(∆⊥) that
occurs for lateral shift ∆⊥. This figure for
comparison includes also dependence
IDN(∆⊥) if calculated from a standard
correlation function ICOR(∆⊥) from the
statistical analysis of the speckle pattern.
Comparison of these two curves clearly
illustrates the impact of the spatial (volume) interaction on shift selectivity of the RER-
beam hologram.

3 Experimental Study
For experimental verification the RER-beam holograms were recorded in 2.3-mm-thick
Fe:LiNbO3 crystal. In a first set of the experiments the crystal was set onto an XY
computer controlled positioning table (shift accuracy 0.025 µm in X-Y plane). A 1 cm
diameter CW argon laser beam (λ = 515 nm, P = 40 mW/cm2) was used as the coherent
light source for hologram recording. The laser beam scattered by the ground glass
diffuser is then picked up by a large aperture lens (f# = 1.4(forming a subjective speckle
pattern in the recording plane. By changing the relative spatial position of the recording
scheme elements allows for simple modification of average lateral speckle size <σ⊥>.
The RER-beam intersected with the plane wave signal beam at an angle of θo = 30o in air
(θRo = 0ο and θSo = 30ο).

The diffraction efficiency of the hologram in its original position (∆⊥ = 0) was
approximately 10-3. After the hologram was recorded, a lateral shift ∆⊥ was introduced to
evaluate the sensitivity of the reconstruction beam intensity upon lateral shift. A typical
example of such operation is shown in Figure 2 for two orthogonal in plane (X-Y) shift
direction (a) and for several values of the speckle size <σ⊥>. The solid line in Figure 2
shows the behavior for the angular selectivity that would operate the diffracted beam
intensity at identical conditions. Following data from Figure 2 the parameter of shift
selectivity can be introduced for RER-beam hologram by analogy with angular selectivity
of the plane wave hologram. It is evident also that speckle-shift selectivity has a very
smooth character and contrary to the angular Bragg selectivity has no side-lobs in course

0.00 2.00 4.00 6.00
Shif t ∆⊥, µm

0.00

0.20

0.40

0.60

0.80

1.00

N
or

m
. I

nt
en

si
ty

 I N
D

Figure 1. Diffraction beam intensity IDN(∆) as a

function of lateral ∆⊥ shift.

IDN(∆⊥)

ICOR(∆⊥

)

293

of displacement.

3.1 Data recording-retrieval.
To verify experimentally the proposed data storage-retrieval concept, a breadboard
system was constructed. A model GSL150/S CW diode-pumped Nd:YAG laser with
output power 200 mW at λ = 530 nm was used as the light source. The SONY model
LCX 026AL SLM with window size 2.3 x 2.3 mm and pixel size 22.5 x 22.5 µm was
used to form a signal channel. The SLM was controlled by a PC that also had a National
Instruments PCI-1407 single channel frame grabber for image retrieval. The data retrieval
was arranged with the CMOS detector (pixel size 11.0 x 11.0 µm).

The detector location and limiting aperture were adjusted to produce the best SLM image
onto a CMOS detector array. The pixel pitch of the CMOS detector was 12 µm x 12 µm,
while that of the SLM was approximately 23 µm x 23 µm. The imaging optics was
adjusted to produce a magnification of 1 SLM pixel to 2 CMOS pixels. Tests were also
conducted using a CCD detector array with a pixel pitch of 8.4 µm x 9.8 µm in place of
the CMOS. The magnification in this case was approximately 1 SLM pixel to 2.25 CCD
pixels in one axis and 1 SLM pixel to 2.6 CCD pixels in the other.

Once the SLM and detector were properly aligned, tests were conducted in which the
data area contained a known, random code and was projected onto either the CMOS or
CCD detectors. Each bit of the code was represented by a value of either no attenuation
or full attenuation over an area of the SLM. The exact scaling was calculated during each
test by the program based on the location of the four dark corners generated by the SLM
for alignment.

To test the reliability of the system using the initial test parameters, a series of known,
random codes were written to the SLM and read back by the detector. For each test, the
code read by the detector was converted back into a digital value and compared to the
original code written to the SLM. Experiments in which several hundred codes were
written and read were conducted and the location of bits that contained errors was

0.00 1.00 2.00 3.00 4.00
SHIFT ∆⊥(µm)

0.001

0.010

0.100

1.000
D

IF
FR

A
C

TE
D

 B
EA

M
 IN

TE
N

SI
TY

 I D
N

 (a
.u

.)

∆⊥y

∆⊥x

0.0 4.0 8.0 12.0 16.0 20.0
X-SHIFT (µm)

0.00

0.20

0.40

0.60

0.80

1.00

In
te

n
si

ty
 I N

D

<ε⊥> ~ 12.0 µm
<ε⊥> ~ 8.0 µm
<ε⊥> ~ 6.0 µm

 a) b)

Figure 2. Shift selectivity of RER-hologram (a) and its dependence upon average
speckle size <σ⊥> (b).

294

tracked. Typical results of the random code generation and optical read-out from the
CMOS detector are shown in Figure 3, where both original (a) and retrieved (b) fields are
presented.

a) b)

Figure 3. Original (a) and retrieved (b) data-page.

The system was found to be generally reliable; however, some data bits proved to be
considerably more prone to errors than the rest. The system also seems to be extremely
sensitive to slight changes in alignment. However, at correct alignment of the optical tract
the performed tests with about 103 cycles allowed us to get the bit-error rate (BER) no
higher than three for the entire field of the detection area.

3.2 RER-beam storage in reflection geometry.
As a part of the recording process optimization, we studied the possibility of data
multiplexing using a reflection holography scheme. In this geometry the signal and
reference beams are illuminating the recording medium from opposite directions, and in
this way the reflection grating is formed. The essential benefit of the reflection geometry
over the transmission one is the possibility of building a more compact memory module.

Experimentally study of the reflection mode geometry operation the speckle-encoded
hologram was recorded with angle θR = 165o between reference RER-beam and object
beam. Average speckle size of RER-beam in this experiment was <σ⊥> ≈ 7 µm. As it was
in transmission geometry the RER-beam was normal to the front surface of LiNbO3
crystal, and C-axis (optical axis) of the crystal was normal to its front surface. The object
beam had an incident angle 30o, propagating from the opposite direction.

No anomalies in the shift selectivity behavior have been observed in this geometry as
compared to the transmission one, and a typically measured dependence of the
normalized diffracted beam intensity upon spatial decorrelation between recorded and
reconstruction positions of the RER-beam (shift selectivity) is shown in Figure 4. It is
worth of noting at this point that the angular selectivity of the plane wave hologram
recorded in a similar conditions was δΘ > 5o that should result in extremely low storage
density, while RER-beam selectivity provides a very good results.

295

4. Summary and Conclusion
In summary, the random encoded reference
beam holographic recording demonstrates
extremely high selectivity and therefore high
data storage. This selectivity is based on the
effects of spatial volumetric decorrelation
between the recording and retrieving
reconstruction field. Contrary to angular or
spectral selectivity of the volume hologram,
the two mechanisms that are traditional used
for data multiplexing, the RER-beam
holograms can be made free from sinc-type
intensity modulation at its reconstruction. That
should result in a much lover cross talk for this
type of multiplexing. We demonstrated that the
RER-beam hologram operates equally well in
both transmission or reflection geometry. These features makes RER-beam hologram
architecture attractive for building compact data storage system with ultra-high density
and capacity.

References

[1] This research was sponsored in part by the US Department of Energy.
[2] Xin An, D. Psaltis, G. Burr, “Thermal fixing of 10,000 holograms in LiNbO3:Fe,”

Appl. Opt., 38, pp. 386-393 (1999).
[3] J.Rosen, M. Segev, A. Yariv, “Wavelength-multiplexed computer generated

holography”, Opt.Lett., 18, pp.744-746, (1993).
[4] G. Rakuljic, V. Leyva, A. Yariv, “Optical data storage using orthogonal

multiplexed holograms,” Opt.Lett., 17, pp.1471(1992).
[5] S.Tao, D.Selvian, J.Midwinter, “Spatioangular multiplexed storage of 750

holograms in Fe:LiNbO3 crystal”, Opt.Lett., 18, pp. 912-914, (1993).
[6] Darskii, V. Markov, “Information capacity of holograms with a reference speckle-

wave grating.” SPIE Proc. 1600, 318 (1992).
[7] V. Markov Yu. Denisyuk, R.Amezquita, “Speckle-shift hologram and its storage

capacity”, Opt. Mem. Neural Net. 6, 91 (1997).
[8] V. Markov, M. Soskin, A. Khishnjak, V. Shishkov, Structural conversion of a

coherent beam with a volume phase hologram in LiNbO3” Soviet Tech. Phys. Lett.,
4, pp.304-306, 1978.

[9] D. Psaltis, M. Leven, A. Pu, G. Barbasthtis, “Holographic storage using shift
multiplexing,” Opt. Lett., 20, pp. 782-784, (1995).

[10] A. Darskii, V. Markov, “Shift selectivity of holograms with reference speckle
wave,” Opt.& Spectroscopy, 65, pp. 392-395,(1988)

0.00 2.00 4.00 6.00 8.00 10.00
Shift ∆⊥(µm)

0.00

0.20

0.40

0.60

0.80

1.00

In
te

n
si

ty
 I

N
D

Figure 4. Shift selectivity in reflection

geometry

297

 iSCSI Initiator Design and Implementation Experience
Kalman Z. Meth

IBM Haifa Research Lab
Haifa, Israel

meth@il.ibm.com
tel : +972-4-829-6341
fax: +972-4-829-6113

Abstract
The iSCSI protocol provides access to SCSI devices over a TCP transport. Using the
iSCSI protocol enables one to build a Storage Area Network using standard Ethernet
infrastructure and standard networking management tools. This paper outlines how we
implemented a family of iSCSI initiators on a common core. The initially supported
initiators were on the Windows NT and the Linux Operating Systems. Code for a version
of the Linux iSCSI initiator has been released as Open Source. Initial testing indicates
that iSCSI can provide reasonable performance relative to traditional storage
environments.

1. Introduction

1.0 SANs and iSCSI
Storage Area Networks (SANs) provide a way for multiple hosts to access a shared pool
of remote storage resources. Traditional SANs are built using FibreChannel technology
[1] running the FCP protocol to carry SCSI commands over the FibreChannel network.
Two separate network infrastructures are needed in an environment that uses a Local
Area Network (LAN) for usual network activity and a SAN for shared remote: an
Ethernet (or equivalent) infrastructure (running TCP and similar protocols) for usual
LAN activity, and a FibreChannel infrastructure (running FCP protocol) for the SAN
activity. iSCSI [2] is a protocol that carries SCSI commands over the TCP protocol [3].
iSCSI enables access to remote storage devices using TCP over standard LAN
infrastructures. Using iSCSI dispenses with the need for a separate FibreChannel
infrastructure and the need for a separate set of FibreChannel management tools. The
difference between a traditional SAN and a possible iSCSI setup is depicted in the
following figure.

298

Classic SAN

Data Network

Storage
Network

IP

Clients

Servers

File HTTP
Database

Storage

Database
Server

File
ServerWeb

Server

FibreChannel

iSCSI

Clients
File HTTP

Database

Data Network

Database
Server

File
Server

Web
Server

Storage

1.1 iSCSI Overview
The iSCSI protocol [2] is a mapping of the SCSI remote procedure invocation model (see
SAM2 [4]) over the TCP protocol [3]. Communication between the initiator and target
occurs over one or more TCP connections. The TCP connections carry control messages,
SCSI commands, parameters and data within iSCSI Protocol Data Units (iSCSI PDUs).
The group of TCP connections that link an initiator with a target form a "session". The
SCSI layer builds SCSI CDBs (Command Descriptor Blocks) and relays them with the
remaining command execute parameters to the iSCSI layer. The iSCSI layer builds iSCSI
PDUs and sends them over one of the session's TCP connections.

1.2 Design Goals
We designed and implemented a family of iSCSI initiators. Initial testing was performed
against an IBM TotalStorage 200i disk controller using a standard 100Mbit Ethernet
network connection. A major design goal of our initiators was to allow for multiple
Operating Systems to work on the same common code base. Each operating system has
its own set of interfaces for the SCSI subsystem and for its TCP transport. However, the
implementation of the iSCSI specification should be common to all operating systems.
When we upgrade to a different level of the iSCSI specification, only the common core
needs to change, while the OS-dependent code should remain more or less intact.

Additional design considerations of our initiators included:
- Allow the initiator to simultaneously use devices from multiple target machines.
- Utilize multiple TCP connections between and iSCSI initiator and target.
- Utilize multiple processors if running on an SMP (Symmetric Multiprocessor).

299

1.3 Design Assumptions
The common core was designed and written using some basic assumptions about the
Operating System (OS) on which it would be run. We assumed that the base Operating
System would have the following features:
- Support for multiple threads in the kernel.
- Reading/writing from TCP can be easily abstracted into a single read/write

function call.
- Some SCSI commands might be (re-) issued from inside the scsi completion

routine, thus possibly running at some priority level for which we may not block.
- Task Management requests may arrive at some priority level, and hence we must

provide an implementation that does not block, if requested.

We also had in mind a certain layering of the SCSI subsystem that seems to be prevalent
in a number of Operating Systems. In both the Linux and Windows NT operating systems
there are 3 layers to the SCSI subsystem. There is one high-level (class) driver for each
type of SCSI device: disk, tape, CD, etc. There is a mid-level (port) driver that has
common code for all types of devices, which takes care of command timeouts and
serialization of commands. The low-level (miniport) driver is specific to an adapter, and
must provide a queuecommand() or dispatch() routine that is used by the mid-level
driver. This 3-level layering is essentially the model that is presented in the Common
Access Method [5].

2. Implementation Details

2.1 Data Type and Function Abstractions
In order to build a common core, we abstracted the basic Operating System dependent
data types and services that we would need to use, and defined these individually for each
Operating System on which we implemented the iSCSI initiator driver. The basic data
types that we defined are described here with their corresponding Linux (2.2) definitions.

typedef spinlock_t iscsiLock_t; /* basic spin lock */
typedef struct wait_queue* iscsiEvent_t; /* sleep event */
typedef uchar iscsiIrql_t; /* interrupt level */
typedef struct scsi_cmnd SCB_t; /* SCSI Command Block */
typedef struct { /* TCP connection descriptor */
 struct sockaddr_in sin;
 struct socket *sock;
 iscsiEvent_t event;
} iscsiSock_t;

The basic services that must be provided by each Operating System and their
corresponding Linux implementation are:

#define iscsiOSmalloc(size) kmalloc(size, GFP_KERNEL)
#define iscsiOSlock(lock, irql) spin_lock_irqsave(lock, (*irql))

300

#define iscsiOSunlock(lock, irql) spin_unlock_irqrestore(lock, irql)
#define iscsiOSsleep(event) sleep_on(event)
#define iscsiOSwakeup(event) wake_up(event)

The common core uses these macros, which enable us to write code that is common to
multiple platforms. The common core must also call some functions to perform TCP
operations. Their prototypes are given below.

s32 iscsiOSreadFromConnection(iscsiSock_t *sock, void *buffer, u32 len, u32 offset);
s32 iscsiOSwriteToConnection(iscsiSock_t *sock, void *header, u32 headerLen, void
*buffer, u32 len, u32 offset);
s32 iscsiOSmakeConnection(u32 addr, u16 portNum, iscsiSock_t *isock);
void iscsiOScompleteCommand(SCB_t *scb, u32 status);

The core provides a number of routines that the OS-dependent layer can call. The
prototypes of the main core functions are given below.

s32 iscsiCoreCreateSession(u32 addr, u16 portNum, u32 nConnections, uchar
*loginParams, u32 loginParamsLen);
s32 iscsiCoreEnterCmdInQ(SCB_t *scb, void *cdb, u32 cdbLen, u32 sessionhandle,
iscsiLUN_t lun, void *data, u32 datalen, u32 flags);
u32 iscsiCoreResetDevice(u32 sessionHandle, SCB_t *scb, iscsiLUN_t lun);

The OS-dependent code calls iscsiCoreEnterCmdInQ() for each command that it wants to
send to the target. The core then takes over and processes the command, sending it to the
target, receiving a response from the target, and reporting the results back to the OS-
dependent code by calling the iscsiOScompleteCommand() function.

2.2 Common Core General Structure
For each session established by the initiator (i.e. for each target), the initiator maintains a
queue of items that must be sent to the target. We call this queue the command queue.
The initiator also maintains a dedicated command queue handler thread to read items
from this queue and to send them to the target.

The initiator maintains state of each command that has been sent to a target. This state
information is saved in a table, indexed by an Initiator Task Tag. The target may send
status or R2T (Ready to Transfer) PDUs to the initiator relating to a particular command.
The Initiator Task Tag is used to easily look up the relevant information in the table.

For each TCP connection (even if we have multiple connections for a single session) the
initiator maintains a dedicated thread to read from that TCP connection. The use of
separate threads to read from each TCP connection and to send out messages allows us to
better exploit the CPUs while waiting for data to arrive or be sent over a network
connection. A read thread posts a read request on its TCP connection to receive an iSCSI
header. The thread waits until data has arrived and has been placed in its buffer. The read
thread parses the iSCSI header to determine how much additional data follows the

301

header. The read thread then posts a read request for the data of specified length,
providing an appropriate buffer into which the data is to be placed. The read thread then
performs whatever processing is needed to handle the PDU.

2.3 Implementation Lessons
In this section we briefly discuss some problems we encountered and lessons we learned
in our implementation.

Windows NT expects command completion to occur from within an interrupt handler.
Since we did not have any real hardware of our own, and all of our internal threads ran at
regular priority, we broke a basic assumption of the Windows NT SCSI subsystem. We
had to artificially create an interrupt in order to get the Windows NT SCSI subsystem to
complete the processing of commands that were handled by our driver.

Linux also expects commands to be completed in a type of interrupt handler. A certain
lock must be obtained and interrupts must be blocked when calling the Linux SCSI
command completion handler.

In Linux, SCSI commands might be issued from within an interrupt handler. The call to
iscsiCoreEnterCmdInQ() might therefore be called from within an interrupt handler, and
any locks that we obtain in that routine must be safe to obtain and contend with an
interrupt handler. It is therefore necessary to block interrupts whenever we obtain locks
that may also be obtained at interrupt level inside the iscsiCoreEnterCmdInQ() function.

There is an inherent problem in mounting and unmounting iSCSI disks automatically
upon reboot. In general, when the system first tries to mount its file systems, the network
isn't yet up, thus preventing us from reaching our iSCSI disks. Also, the disk cannot
automatically unmount cleanly during shutdown since by the time the system tries to
sync its disks the network may already be gone.

2.4 Performance
We performed some preliminary measurements of iSCSI performance versus a directly
attached IDE disk. We ran the IOTEST benchmark [7] on Linux for different sized block
transfers and compared the results. The following graph shows the relative number of
read operations between the iSCSI and local IDE disk.

0.5 1 2 4 8 16 32 64
Kb

-20%
-10%

0%
10%
20%
30%
40%
50%

%

Improvement of iSCSI over local disk

302

For small data transfers iSCSI outperformed the local IDE disk by about 30%, despite the
network overhead. This is due to the higher performance SCSI disks on the TotalStorage
200i target. Using the TotalStorage 200i SCSI disk locally outperformed iSCSI by about
3% for small transfers. For large data transfers, the network overhead started to take on a
larger and larger impact, causing the iSCSI performance to be up to 12% worse than the
local IDE disk. This is apparently due to the numerous interrupts needed for the
packaging and processing of many small TCP packets for a large data transfer. This
phenomenon should be alleviated when using Network Interface Cards (NICs) that
offload the TCP processing, thereby reducing the number of interrupts that must be
handled by the host.

3. Related Work
Network Storage is becoming more and more common, allowing remote hosts to more
easily access remote and shared data. A number of studies have been performed that
show that IP attached network storage can provide reasonable performance relative to
FibreChannel and other storage environments. See, for example, [8] [9] [10].

Other early iSCSI initiator drivers have been made available as Open Source [6]. Some of
these early implementations support a fixed target with a single TCP connection. Some of
these implementations were written and tested for uniprocessors, and could not take
advantage of the multiple processors in an SMP. Our implementation has the distinction
of allowing multiple targets, multiple TCP connections within each session to a target,
and the ability to fully exploit SMP machines. The performance achieved on a
uniprocessor by the other software iSCSI initiator implementations that we tested
(against the same target) were essentially the same as for our initiator.

4. Future Work
A version of our Linux initiator has been released as Open Source [11]. We continue to
revise our driver to keep up with changes in the iSCSI specification as it evolves. Over
time, we are adding additional features that are defined in the specification. We intend to
perform comprehensive performance measurements and adjust our driver accordingly.

5. Conclusion
We implemented a family of iSCSI initiators utilizing a common core. We outlined our
basic design objectives and how we implemented our initiators. When we upgraded to a
newer version of the iSCSI specification, we were able to perform the necessary changes
to the common core to correspond to the new iSCSI specification, while the OS-
dependent parts of the code remained essentially unchanged. Our implementation allows
multiple targets, multiple TCP connections within each session to a target, and the ability
to exploit SMP machines. Using the IBM TotalStorage 200i target, iSCSI significantly
outperforms the local IDE disk for small data transfers, but lags behind IDE for large data
transfers, apparently due to the extra overhead of network interrupts.

303

Acknowledgement
The author has had the benefit of interacting and drawing on the experience, ideas, and
help of many people that were involved in the iSCSI project. The author would especially
like to thank Zvi Dubitzky, Eliot Salant and Liran Schour for their contributions.

References
[1] Benner, A. Fibre Channel: Gigabit Communications and I/O for Computer Networks,
McGraw Hill, New York, 1996.
[2] Julian Satran, et al, iSCSI (Internet SCSI), IETF draft-ietf-ips-iscsi-10.txt (Jan 20,
2002); see www.ece.cmu.edu/~ips or www.haifa.il.ibm.com/satran/ips
[3] RFC793, Transmission Control Protocol, DARPA Internet Program, Protocol
Specification, Sep 1981.
[4] SAM2, SCSI Architecture Model – 2, T10 Technical Committee NCITS (National
Committee for Information Technology Standards), T10, Project 1157-D, Revision 20,
19 Sep 2001.
[5] CAM, Common Access Method – 3, draft of American National Standard of
Accredited Standards Committee X3, X3T10, Project 990D, Revision 3, 16 Mar 1998.
[6] See www.ece.cmu.edu/~ips/IPS_Projects/ips_projects.html.
[7] See www.soliddata.com/products/iotest.html.
[8] Rodney Van Meter, Greg Finn, and Steve Hotz, “VISA: Netstation’s Virtual Internet
SCSI Adapter,” in Proceedings of the ACM 8th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS) (San Jose,
Calif., Oct.), ACM Press, New York, 1998, 71-80. see also www.isi.edu/netstation.
[9] Wee Teck Ng, Hao Sun, Bruce Hillyer, Elizabeth Shriver, Eran Gabber, and Banu
Ozden, “Obtaining High Performance for Storage Outsourcing”, FAST 2002, Conference
on File and Storage Technologies, Jan 2002.
[10] Garth A. Gibson and Rodney Van Meter, “Network Attached Storage Architecture”,
Communications of the ACM, Nov 2000, vol 43, no. 11.
[11] See oss.software.ibm.com/developerworks/projects/naslib.

305

Efficiently Scheduling Tape-resident Jobs∗
Jing Shi, Chunxiao Xing, Lizhu Zhou

Department of Computer Science and Technology
Tsinghua University

Beijing 100084, P.R.China
Shijing@mails.tsinghua.edu.cn, {xingcx, dcszlz}@tsinghua.edu.cn

Tel: +86-10-62789150
Abstract
Many large-scale data-intensive applications need to use tape library to manage large data
sets, thus it is critical to study the online access techniques of tape library. The focus of
this paper is on efficient tape-resident jobs scheduling, which is the key technique for
improving performance of tape storage systems. We present several scheduling
algorithms for tape-resident jobs, discuss the effectiveness of scheduling policies under
cache-limited and cache-unlimited condition, and show the results of simulation
experiments.

1 Introduction
Many data repositories are expected to become huge, possibly counted by terabytes in
size. Examples of such repositories include terabyte-level Telecommunications Call
Detail Warehouse, petabyte-level Digital Libraries, exabyte-level National Medical
Insurance Records, Zettabyte-level Spatial and Terrestrial Database and video and Audio
Data Archives[1][2]. The management of such large data sets requires the use of tertiary
storage, typically implemented by using tape libraries. As a result, accessing, analyzing,
mining, and other data-intensive applications can comprise of many tape-resident jobs
that retrieve either wholly, or in part, data from tapes.

Tape library is characterized by (1) the use of removable tape media and a robot arm, (2)
sequential access of data, and (3) the performance bottleneck caused by tape access.
Tape-resident job usually consists of more than one request, each of which must be
completed before the job is finished, and uses disk cache space to store the data of its
completed requests. To improve the performance of tape-resident jobs, we have to
consider the following two problems -- the accessing latency of tape library, and the
capacity limitation of disk cache for storing the retrieved data from tapes.

Previous studies mostly focus on the request scheduling of tape library to improve
performance of robotic storage library[3][4][5][6]. But our goal is to schedule the jobs
consisting of a set of requests to minimize the completion time of the whole job. A study
closely related to ours is the one in which the scheduling problem of tape-resident jobs is
reduced to well-known flow-shop scheduling[7]. However, it doesn’t consider the
optimal scheduling of tape libraries.

In this paper, we will introduce better scheduling strategies for executing tape-resident
jobs. We will discuss how to improve the performance of tape-resident jobs by optimized

∗ This research is sponsored by the National Grand Fundamental Research 973 Program of China under Grant
No.G1999032704

306

I/O performance of tape library, and discuss the effectiveness of scheduling policies
under cache-limited condition or cache-unlimited condition by simulation study. Section
2 gives the scheduling problem description of tape-resident jobs. The scheduling
algorithms will be presented in Section 3 and the simulation results for performance
comparison of scheduling algorithms will be given in Section 4. Finally, Section 5
concludes the paper.

2 Problem Description
A tape-resident job consists of a set of requests, each of which is a read operation for a
set of continuous blocks on a tape. We assume that the requests are independent of one
another, that is, requests don’t need to be executed in some forced order. The reason is
that the access of tape library is much slower than that of disk, if processor begins to
execute the job before the data involved in by its requests are all loaded into disk cache,
then the job is possibly blocked for waiting unloaded requests. So we reduce the
execution principle of tape-resident jobs to a simple form, that is, the job doesn’t begin to
execute until the data of its requests are all loaded into disk. This assumption means that
the data of requests may be loaded by any order. The following Fig.1 is the description
model of tape-resident jobs.

Since a job of several requests may involve more than one tapes, combining jobs that
access the same media will make system process as much requests as possible in a tape
schedule. One problem is that if jobs are not properly scheduled, the disk cache may be
run out quickly. Therefore, it is critical to study the correlation between tape drive
utilization and disk capacity limitation for tape-resident job scheduling. To do so, we
consider the following optimization policies when designing tape-resident job scheduling
algorithms:

• To improve the I/O performance of tape library
• To reduce resident time of data of jobs on disk cache
• To coordinate the input and output throughput of jobs to or from disk cache

3 Scheduling Algorithmic Issues
We study our scheduling problems under two kinds of restrictive conditions respectively:
cache-limited and cache-unlimited. The former means the selection of scheduling policies
must take the available space on disk cache into consideration, and the later assumes that

Drive-1

Drive-2

Drive-n
Poisson
batch
arrival

Fig. 1 The description model of tape-resident jobs

Processor

Job wait queue

Job-1 Job-2 Job-3

Tape library

Disk cache

Request

307

there is enough space of disk cache for scheduling. We first present five scheduling
algorithms under the second condition, and then discuss these algorithms with the first
condition of constraint. The algorithms focus on two key points: tape selection policy,
and scheduling list creation (a scheduling list is an ordered list of requests for a selected
tape).

(1) FCFS (First Come First Service). This algorithm services the jobs in the order of
arrival, and always chooses the tape that the first request in job wait queue accesses to for
next execution. The scheduling list of selected tape includes all requests that belong to the
job and access the selected tape. These requests will be executed within one sweep of the
tape.

(2) Max-EBW (Maximum Effective BandWidth). This policy improves the scheduling
of tape-resident job in maximizing I/O performance of tape library. It always chooses the
tape with maximum effective bandwidth for the next execution. The effective bandwidth
of a tape is defined to be the total number of bytes transferred from the tape divided by
the number of seconds consumed to perform this tape schedule.

(3) FCFS-PICKUP. This algorithm uses simplest tape selection policy--FCFS, namely,
it always selects the tape to be accessed by the first request of a job in the wait queue, and
then the algorithm inserts all requests of other jobs in the wait queue that will access the
selected tape into its scheduling list, which is called the PICKUP policy for scheduling
list creation.

(4) DYN-PICKUP. This algorithm has similar tape selection and scheduling list creation
as FCFS-PICKUP. Besides this, it particularly considers the new arrival jobs. When the
requests belonging to a new arrival jobs are trying to access the blocks on online tape that
the tape head will pass over during the current sweep, they will be inserted into the
running scheduling list. This is the dynamic policy for scheduling list creation.

(5) TUNING-PICKUP. This algorithm makes FCFS-PICKUP scheduling tunable. It
uses PICKUP intension factor F, which indicates that PICKUP scheduling is only
applied among the first F waiting jobs in the job wait queue, to tune the scale of
scheduling list. Obviously, larger F means both larger cache occupation, and quicker
response time. The selection of proper F value is the difficult point of this algorithm.
Currently, we determine the F value by simulation experiments. A proper method for F
value selection will be studied.

Above algorithms have different cache requirement: FCFS needs least cache space;
TUNING-PICKUP may tune the size of cache occupation by changing PICKUP
intension factor F; and other algorithms use more cache space than FCFS, but are not able
to tune cache requirement. The comparison details of above algorithms will be given in
next section.

4 Simulation Study
In this section, we give two groups of simulation results, each of which consists of two

308

figures: average response time of jobs and maximum cache requirement of jobs. The
simulation parameters of tape library are based on Exabyte 220 tape library with two
Eliant 820 drives and twenty EXABTYE 8mm tapes. In addition, we assume that the job
arrival is stochastic and follows Poisson distribution. Each job averagely consists of 8
requests that have the average size of 64M bytes. We also assume that the disk cache
should at least meet the maximum storage requirement of any job. The jobs are
independent of one another.

Fig.1a and Fig.1b show response time and cache occupation curves for all algorithms
except for TUNING-PICKUP. From the graphs we can observe that FCFS has least cache
occupation but longest response time, and other algorithms significantly improve the
average response time of tape-resident jobs by optimizing I/O performance of tape library.
This performance improvement from tape library optimization has an associated cost in
terms of storage space. The Figure also indicates that FCFS-PICKUP is the best
scheduling policy. The reason is that it uses FCFS policy to speed up job output from
disk cache while it takes advantage of PICKUP policy to improve I/O performance of
tape library. Although the time performance of DYN-PICKUP policy is slightly better
than that of FCFS-PICKUP, but its cache occupation is much higher than FCFS-PICKUP
and Max-EBW. Its heavier workload creates proportionally larger storage requirement.

Fig. 1a Comparison of response time

0

5000

10000

15000

20000

25000

0 2. 4 4. 8 7. 2 9. 6 12
Jobs per hour

M
ea

n
re

sp
on

se
 ti

m
e

(s
)

Max-EBW
FCFS
FCFS-PICKUP
DYN-PICKUP

Fig.1b Comparison of cache occupation

0

10000

20000

30000

40000

50000

0 2. 4 4. 8 7. 2 9. 6 12
Jobs per hour

M
ax

im
um

 c
ac

he
 o

cc
up

at
io

n
(M

by
te

s)

Max-EBW
FCFS
FCFS-PICKUP
DYN-PICKUP

The next simulation experiment explores the correlation between response time and
cache space for FCFS-PICKUP algorithm and TUNING-PICKUP algorithm. We use
PICKUP intension factor F to tune the size of cache occupation. This is very helpful in
achieving a reasonable response time for tape-resident jobs when cache space is limited.
Fig2a and Fig.2b illustrate when properly tuned, the time performance of
TUNING-PICKUP is close to that of Max-EBW, but its space occupation is significantly
reduced.

5 Conclusions
This paper discusses some efficient scheduling algorithms for tape-resident jobs. Our
contributions include: (1) incorporate optimal I/O scheduling policies of tape library into
the scheduling of tape-resident jobs so as to improve performance of tape-resident jobs
by increasing the data throughput of tape library processing; (2) design better algorithm

309

FCFS-PICKUP for cache-unlimited system and TUNING-PICKUP for cache-limited
system. The future work is to give a practical evaluation method for PICKUP intension
factor F so that we may simply select factor F value for TUNING_PICKUP algorithm
according to both workload and cache size.

Fig. 2a The comparison of response time

500

5500

10500

15500

20500

25500

4. 8 7. 2 9. 6 12
Jobs per hour

M
ea

n
re

sp
on

se
 ti

m
e

(s
)

Max-EBW
FCFS-PICKUP
TUNING-PICKUP

Fig. 2b The comparison of cache
occupation

4000

9000

14000

19000

24000

29000

34000

39000

4. 8 7. 2 9. 6 12
Jobs per hour

M
ax

im
um

 c
ac

he
oc

cu
pa

tio
n

(M
by

te
s)

Max-EBW
FCFS-PICKUP
TUNIBG-PICKUP

Reference
[1] Cariño F., Kaufmann A. and Kostamaa P., Are you ready for Yottabytes?, In Proc. of

17th IEEE symp. on Mass Storage Systems in Cooperation with the 8th NASA GSFC
conf. on Mass Storage Systems and Technologies, pp. 476-485, Match 2000

[2] John Jensen, John Kinsfather and Parmesh Dwivedi. Data Volume Proliferation in the
21st Century--The Challenges Faced by the NOAA National Data Centers (NNDC),
In Proc. of 17th IEEE symp. on Mass Storage Systems in Cooperation with the 8th
NASA GSFC conf. on Mass Storage Systems and Technologies, pp. 335-350, Match
2000

[3] Bruce K.Hillyer and Avi Silberschatz， Random I/O Scheduling in Online Tertiary
Storage Systems，In Proc. of the 1996 ACM SIGMOD Inter. Conf. on Management of
Data, pp195-204, Canada, Jun 3-6 1996

[4] Bruce K. Hillyer, Rajeev Rastogi and Avi Silberschatz, Scheduling and Data
Replication to Improve Tape Jukebox Performance, ICDE’99, pp. 532-541, 1999

[5] Toshihiro NEMOTO and Masaru KITSUEGAWA，Scalable Tape Archiver for
Satellite Image Database and its Performance Analysis with Access Logs—Hot
Declustering and Hot Replication--，In Proc. of 16th IEEE symp. on Mass Storage
Systems in Cooperation with the 7th NASA GSFC conf. on Mass Storage Systems and
Technologies, pp. 59-71, 1999

[6] Shi Jing and Zhou Lizhu, Dynamic Scheduling and Tuning to Improve Online Tape
Library Performance, In Proceedings of the 6th International Conference for Younger
Computer Scientists (ICYCS’2001), pages120-124, Oct. 2001

[7] Sachin More, S. Muthukrishnan and Elizabeth Shriver, Efficiently Sequencing
Tape-resident Jobs, In Eighteenth ACM Symposium on Principles of Database
Systems, 1999

311

The storage stability of metal particle media : Chemical analysis and
kinetics of lubricant and binder hydrolysis

Kazuko Hanai ,Yutaka Kakuishi

Research & Development Center,Recording Media Products Div.,
 Fuji Photo Film Co.Ltd.

2-12-1 Ohgi-cho
 Odawara Kanagawa, 250-0001, Japan

hanai@mrdc.fujifilm.co.jp
 kakuishi@mrdc.fujifilm.co.jp

tel: +81-465-32-2023
fax: +81-465-32-2170

Abstract
 Archival life of MP (metal particles) tape is one of the biggest concerns for mass data
storage users. The long-term stability of an MP tape is studied in terms of lubricant and
binder systems. MP formulation tape that has been used for M2 videotape and DLT3 tape
for more than fourteen years is analyzed. Gas chromatography (GC) and gel permeation
chromatography (GPC) are used to analyze chemical changes of lubricant, fatty acid ester,
and binder, polyester-polyurethane. The kinetics of hydrolysis of the fatty acid ester can
be described by two first-order reactions. One is estimated to be corresponding to the
hydrolysis of fatty acid ester on the surface of the magnetic layer, and the other to the
fatty acid ester dissolved in the binder of magnetic layer. The hydrolysis of
polyester-polyurethane (PU) can also be described by a first-order reaction. A durability
test reveals that this MP tape keeps its good performance after long-term storage. A
magnetization decrease of about twelve percent is observed after saving for fourteen
years. This small decrease does not affect the above mentioned good performance.

1 Introduction
 MP tape has been widely used in the fields of mass storage, broadcast, etc. In these
fields, storage stability of MP tape is very important together with recording density. For
development of MP media excellent in storage stability, it is necessary to know the
problems in long-term storage. The claims during the use were investigated, and it
became clear that many of them were due to the hydrolysis of the fatty acid ester as
lubricant and the PU as binder.
 As the first step of estimation of life expectancy of media, it was decided to study
chemical changes of organic materials of MP formulation tape that has been used for M2
videotape and DLT3 tape for more than fourteen years. In addition, the magnetic
properties and other physical characteristics were investigated and the durability was
tested.

2 Experimental
 The MP tapes for M2 stored in a laboratory for more than fourteen years were analyzed.
Two types of fatty acid ester are contained as lubricants in the tape. One fatty acid ester is
buthoxyethoxyethoxy stearate (BE2S) and the other is isoamyl stearate (AS). They were
extracted with n-hexane from the tape and were quantified by GC (Shimadzu GC-17A).

312

Analysis of binder was also performed. Polyvinyl chloride and PU are contained as
binder in the tape and they are crosslinked by hardener. PU used in a magnetic layer of
this tape consists of methanediphenyl diisocyanate, hydroxycaproic acid, neopentyl
glycol and phthalic acid. The magnetic layer was removed mechanically from magnetic
tape and the soluble components were extracted with tetrahydrofuran. The extracts were
analyzed by GPC (Toso HPLC8020) with an ultraviolet detector. Polyvinyl chloride
shows no absorption in the ultraviolet region and only PU can be quantified.

3 Results and Discussion
3.1 Fatty acid ester
 It was reported that lubricant loss in short term accelerating conditions is due to
degradation and vaporization[1][2]. In our study, the decay of lubricant in long-term
natural storage was investigated from a viewpoint of hydrolysis. It is known that the
hydrolysis reaction of ester is first-order to ester concentration if enough water exists.
The amount of fatty acid ester which remains in the tape and can be extracted with
n-hexane is shown in Fig.1 and the decay rate constant of fatty acid ester is shown in
Fig.2 and Tab.1.
The decay reactions of the two fatty acid esters are expressed as two first-order reactions
of two steps in which each reaction rate differs. The ratio of reaction rate of BE2S to that
of AS is shown in Tab.2. In the first step, although AS is smaller and more volatile than

BE2S, the decay loss reaction rate of BE2S is about 3.6 times of that of AS. This ratio of
reaction rate is approximately equal to the ratio of hydrolysis reaction rate of fatty acid
esters measured in acetone containing a small amount of HCl. Therefore it is considered
that hydrolysis reaction is dominant in the first step. In the second step , the reaction rate
of BE2S is about 1/6 of the first one and the difference of reaction rate of BE2S and AS
is small, so vaporization is considered to be involved. It is assumed that the first decay

Fig.2 Reaction rate of Fatty Acid Ester
C0;initial amount
C0-X;remaining amount

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 5.0 10.0 15.0

years

ln
 C

0/
(C

0-
X

)

BE2S(1st)
BE2S(2nd)
AS(1st)
AS(2nd)

Fig.1 Decay of Fatty Acid Ester

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 5 10 15

years

am
ou

nt
 e

xt
ra

ct
ed

 b
y

n-
he

xa
ne

BE2S
AS

313

 /year /sec
BE2S (1st) 2.9E-01 9.3E-09
BE2S (2nd) 4.3E-02 1.3E-09
AS (1st) 8.2E-02 2.6E-09
AS (2nd) 3.9E-02 1.2E-09

Table 1. The Decay Rate Constant of Fatty Acid Esters

1st 2nd In acetone solution made weakly acidic with HCl
3.6 1.1 3.1

Table 2. The Decay Rate Ratio of BE2S/AS

comes from the fatty acid ester on the magnetic layer surface and the subsequent slow
decay comes from the fatty acid ester dissolved in the magnetic layer binder. The
thickness of the fatty acid ester layer on the surface is calculated to be about 0.7
nanometers from the quantity lost at the first step reaction and the surface area of the tape
measured by gas-adsorption method. The concentration of the fatty acid ester dissolved in
the magnetic layer binder is also calculated to be about 3 wt%, and is equal to the
concentration at which binder films become opaque when the varying amount of fatty
acid ester is added.

3.2 Polyester-polyurethane

/year /sec
1.4E-03 4.3E-11

Table 3. The Decay Rate of Polyester Polyurethane

 Though hydrolysis of PU of magnetic tapes had been reported [3][4], PU of MP tape in
long-term natural storage was not yet investigated. We attempted to obtain the reaction
rate of hydrolysis of PU using the ratio of the soluble component to PU content and the
number average molecular weight of soluble PU. If one ester linkage of polymer is
broken by hydrolysis, the number of PU molecules increases by one[5]. In order to find
the hydrolysis reaction rate, the reciprocal of number average molecular weight was used

314

Fig.3 Molecule Number of Soluble PU
 extracted from magnetic layer 1g

3.5E+18

4.0E+18

4.5E+18

5.0E+18

5.5E+18

6.0E+18

6.5E+18

7.0E+18

0.1 1 10 100

 year

 e
xt

ra
ct

ed
 m

ol
ec

ul
e

nu
m

be
r

Fig.4 Reaction Rate of PU Degradation
Co;total linkage number in PU
X;ester linkage number broken
(=increased molecule number)

0.0E+00
2.0E-03
4.0E-03
6.0E-03
8.0E-03
1.0E-02
1.2E-02
1.4E-02
1.6E-02
1.8E-02
2.0E-02

0 5 10 15 20

year

ln
 C

o/
(C

o-
X

)

as the number of soluble PU molecules. The number of soluble PU molecules is shown in
Fig.3. The number of soluble PU molecules increased remarkably after about 2 years, and
hydrolysis reaction was considered to become predominant. Hydrolysis reaction rate was
calculated using the increase of the number of molecules, as a first-order reaction shown
in Fig.4 and Tab.3. The hydrolysis reaction of PU is extremely slow when compared to
the hydrolysis of fatty acid ester in this magnetic tape. The reason is considered to be
because PU is a high polymer and is crosslinked by hardener.

3.3 Physical characteristics and Durability test
 Physical properties and video output level of a new tape and the tape stored for 14 years
were measured and were compared in Tab.4. A 1-minute length x 1,000 passes running
test using an M2 VCR was also performed as a durability test. Though remanence
magnetization loss was about 12 % after 14 years, the decrease of video output level was
0.6 dB and was acceptable in practical use. The glass transition temperature of the
magnetic layer did not change. The friction coefficient of the magnetic surface increased
slightly but kept at a low value. After running for 1,000 passes as the durability test, the
slight debris on the video heads was observed. But there was no difference between these
two tapes in the amount of debris. These tests reveal that this MP tape keeps its good
performance after long-term storage.

315

Storage Time (years) 0 14 Test Method
Magnetic Properties

Br (Gauss) 2,640 2,320 VSM
Mechanical Properties

Glass transition temperature of magnetic
layer (degree at Celsius)

82 82 Dynamic
viscoelastometer

Friction coefficient of magnetic surface 0.22 0.31 Vs. Stainless bar
Electro Magnetic Conversion Properties

Video output (dB) 0 -0.6 M2 VCR

Table 4. Changes of Properties of MP Tape after Long-Term Storage

4 Conclusions
 The physical characteristics and the chemical changes of the MP tape over 14 years
were pursued, and the storage stability of the MP tape was proved to be satisfactory.
The hydrolysis reactions of lubricant and binder in the MP tape could be expressed as
first-order reactions, and the reaction rates were calculated. It becomes possible to make a
quantitative comparison between the changes in the natural storage conditions and those
in the accelerating tests. The thickness of surface fatty acid ester of the magnetic layer
and the concentration of fatty acid ester dissolved in the binder can be estimated.
Usually,these are very difficult to quantify by other techniques such as ESCA or AES
because fatty acid esters are volatile and have no special element except carbon,
hydrogen and oxygen in common as magnetic layer binder elements[6].
 The accelerating conditions which can be used to simulate more precisely the passage of
long time on the basis of these data will be established and be applied for the
development of new media.

References
[1] The National Media Laboratory(NML) "Media Stability Studies Final

Report,"p40(1994)
[2] E E Klaus,B Bhushan, "The Effects of Inhibitors and Contaminants on the

Stability of Magnetic Tape Lubricants, " Tribology Trans., 31 (1988) 276-281
[3] E F Cuddihy, "Aging of Magnetic Recording Tape, " IEEE Trans. On

Magn.,MAG-16 (1980) 558-568
[4] H N Bertram and E F Cuddihy, "Kinetics of the Humid Aging of Magnetic

Recording Tape," IEEE Trans. On Magn.,MAG-18 (1980), 993-999
[5] K.Yamamoto, "A Kinetic Study of Polyester Elastmer’s Hydrolysis in Magnetic

Tape , " Proceedings of the 4th Sony Research Forum (1995) 367-372
[6] M S Hemstock and J L Sullivan, " The Durability and Signal Performance of Metal

Evaporated and Metal Particle Tape, " IEEE Trans. On Magn.,32 (1996) 3723-3725

317

Java and Real Time Storage Applications
Gary Mueller
195 Garnet St

Broomfield, CO 80020-2203
garymueller@qwest.net
Tel: +1-303-465-4279
Janet Borzuchowski

Storage Technology Corporation
2270 South 88th Street

M. S. 4272
Louisville CO 80028

janetborzuchowsk@qwest.net
 Tel: +1-303-673-8297

Abstract
Storage systems have storage devices which run real time embedded software. Most
storage devices use C and occasionally C++ to manage and control the storage device.
Software for the storage device must meet the time and resource constraints of the storage
device. The prevailing wisdom in the embedded world is that objects and in particular
Java only work for simple problems and can not handle REAL problems, are too slow
and can not handle time critical processing and are too big and can’t fit in memory
constrained systems.

Even though Java's roots are in the embedded application area, Java is more widely used
in the desktop and enterprise environment. Use of Java in embedded real time
environments where performance and size constraints rule is much less common.

Java vendors offer a dizzying array of options, products and choices for real time storage
applications. Four main themes emerge when using Java in a real time storage
application; compiling Java, executing Java with a software Java Virtual Machine (JVM),
executing Java with a hardware JVM and replacing a real time operating system (RTOS)
with a JVM.

The desktop and enterprise environment traditionally run Java using a software JVM that
has been ported to a particular platform. The JVM runs as a task or process hosted by the
platform operating system. With the performance and memory available on most
workstations and personal computers, running an application on a software JVM is not an
issue. However, many desktop and enterprise applications are not faced with the critical
time and space constraints of an embedded application. Because of these constraints,
running an embedded application on a software JVM incurs the additional overhead of
software running software. Although it might be possible to run some embedded
applications on a software JVM because of the tremendous speed of some processors, for
most embedded applications, this configuration will not met timing or space constraints.

For a real-time storage application, running a JVM in software is typically only used for
tasks which are not time critical. Typical tasks include hardware configuration,

318

maintenance and diagnostics, or upgrading or loading new code. For these tasks, a
software JVM can meet the performance and space requirements. The software JVM
typically runs as a low priority task. Other time critical tasks are written in C or C++ and
do not use the intermediary JVM.

Compiled Java is an acceptable option since the JVM is eliminated and the functionality
of the JVM such as garbage collection is wrapped into a set of runtime libraries.
Compiling Java gives you the benefit of an object-oriented language without the
performance penalty of an interpreted language.

The ultimate in speed and performance is attained when the JVM is cast in silicon.
Several hardware vendors are planning or currently offering coprocessors or custom
chips that execute Java directly in hardware.

Since the JVM provides the runtime environment for Java, in essence an operating
system, one interesting approach is to use the JVM as a replacement for a RTOS.

This paper discusses the advantages and disadvantages of each approach as well as
specific experiences of using Java in a commercial tape drive project.

1 Why Java for Real Time Storage Systems?
Java is an object-oriented language which gives you all the advantages of object
technology, including faster delivery to market, more maintainable code, and easier
adaptation to change. Java enforces the discipline of object design. Using Java in an
embedded environment presents several challenges. Embedded applications have both
functional and timing requirements and run in resource constrained environments. Java
must meet the performance and space requirements of the embedded application. Some
questions to answer include:

• Space the final frontier, will the JVM and class libraries fit?
• Performance, can the JVM run fast enough to meet hard real time deadlines?
• Scheduling, is the JVM deterministic and can non-deterministic tasks, such as

garbage collection be scheduled?

2 Java Basics
Java is both a language and an environment which supports compilation and execution of
the language.

Java, the language, supports single inheritance, polymorphism and other object concepts.
Java is compiled to an intermediate language, Java byte codes, the assembly language for
the JVM. The output of the Java compiler is a class file, which contains the Java
bytecodes.

Java, the environment, is a virtual machine that has been ported to many operating
systems and processors. The JVM interprets and executes the Java bytecodes and is
usually written in C or C++. The JVM loads the Java class with a class loader, links the
class files, verifies the bytes in a class file for correctness, prepares the class files for

319

execution, initializes the class, resolves method references and determines when to
garbage collect unused classes. A typical Java environment is shown in Figure 1.

Figure 1 - Java Runtime Environment

3 Flavors or Java for Embedded Systems
There are four flavors of Java for embedded systems:

• Software Java Virtual Machine
• Compiled Java
• Hardware Java Virtual Machine
• Java as a Real Time Operating System

3.1 Software Java Virtual Machine
A software JVM is an application, process or task that typically is hosted by another
operating system. Software JVMs are typically used for desktop or enterprise
applications. Most desktop applications execute Java using a JVM running as a process
or task on the desktop. Browsers execute Java with a JVM in the browser. This is the
classic use of Java.

Since Java is interpreted by another program, the software JVM, there is a concern about
the performance of the application which the JVM is executing. In particular, embedded
applications must execute within specific time frames. Executing the embedded
application on the JVM which itself is being executed raises the question of how fast the
embedded application is executing and whether it can meet its required deadlines. One
might speculate that there may exist embedded applications which given enough
hardware horsepower will meet their required deadlines with a software JVM.

For those embedded applications which rely on and use a RTOS, a software JVM could
be executed as a set of tasks or processes on the RTOS. Assuming the JVM tasks have a
sufficient priority, some non real-time or slow real time embedded application tasks
could be run using a software JVM such as:

• Hardware configuration

Java ByteCode Class Libraries Java Source

Java Virtual Machine

Operating System

Hardware

Java Compiler

320

• Maintenance and diagnostics
• Code upgrades and loads

This method of executing Java is typical for desktop and enterprise applications where
performance, although a concern, is not a driving factor. An example of this flavor of
Java is WindRiver® Personal JWorks™ [1].

3.1.1 WindRiver® Personal JWorks™
As shown in Figure 2, Personal JWorks includes the PersonalJava Core Libraries, the
JVM, the VxWorks Real Time Operating System (RTOS), the Supporting Native
Libraries, a board support package (BSP) and device drivers for the particular processor
and RTOS.

The PersonalJava Core Libraries include the applet, awt, beans, io, lang, math, net, rmi,
security, sql, text and utl packages. The Personal JWorks application environment is
based on the Java Development Kit 1.1.8 and adds security as specified in the Java 2
Software Development Kit, version 1.2.

Personal JWorks supports and fully implements the Abstract Windowing Toolkit
(AWT) and fully supports the Java AWT graphics system. The WindRiver Media
Library (WindML) glues the Personal JWorks environment to an applications graphics
hardware. WindML supports 2D graphics primitives, fonts and provides audio and video
support.

321

Personal JWorks uses a software JVM that runs as a set of tasks on VxWorks®. Using
the Java Native Interface (JNI), JVM services such as thread and memory management
(garbage collection), synchronization mechanisms, networking and graphics are mapped
to VxWorks tasks through the Supporting Native Libraries. As a result, the VxWorks
scheduler is able to prioritize and preempt the Java threads in the

Figure 2- Personal JWorks™ Architecture

same way as it does VxWorks tasks. Although Personal JWorks does not provide real-
time response, any VxWorks native task placed at a higher priority than a Java thread will
execute without impact. Personal JWorks thus retains the determinism of VxWorks®.
Using the JNI, Personal JWorks applications can access any C/C++ function in the
VxWorks operating system including system calls.

3.2 Compiled Java
Compiled Java removes the environment portion of Java and treats Java as a language.
Java is simply compiled to either native code or to an intermediate language such as C or
C++. Compiled Java provides the benefit of an object-oriented language without the
performance penalty of an interpreted language. Garbage collection and other JVM
services are implemented through runtime libraries. Two examples of compiled Java are
the Gnu Compiler for Java and WindRiver® Diab™ FastJ®.

3.2.1 Gnu Compiler for Java™(gcj)
Java applications are compiled and linked with the gcj runtime library, libgcj. The libgcj
supplies the core classes, the garbage collector and the bytecode interpreter. The libgcj
must be ported to the processor in your environment. The gcj allows three types of
compiling:

PersonalJava 3.1
CoreLibraries

JVM

Lightweight
JDK 1.1.8AWT

Supporting Native Libraries WindML 2.0

VxWorks 5.4

BSP/Device Drivers

322

• Java source code to native machine code
• Java source code to Java bytecode
• Java bytecode to native machine code

3.2.2 WindRiver® Diab™ FastJ®
FastJ compiles C, C++ and Java source code to native machine code. As shown in
Figure 3, the FastJ compiler compiles, optimizes and generates assembly code for the
desired target CPU and runtime environment using the Global Optimizer, Code Selector
and Code Generator. External assembly source code and external libraries may be
assembled and linked with the C, C++ and Java code. To reduce code size only needed
core libraries may be configured. The Assembler together with the Linker produce an
ELF format executable image for the desired processor.

FastJ supports three memory management options:

• Explicit memory management, similar to C/C++, eliminates garbage
collection.

• Standard, non-incremental garbage collection, runs when memory is low or
explicitly called.

• Preemptive, incremental garbage collection, runs as a preemptable, low
priority background task.

Figure 3 - FastJ® Compiler Architecture

C Source C++ Source Java Source

C Parser C++ Parser Java Parser

Global Optimizer

Code Selector

Code Generator

Assembler

Linker Archiver

Common Back End

ELF Executable File
(Native Machine Code) CPU

Run-Time
Profile Info

CPU-Specific
 Info

Libraries

Assembly Source

323

3.3 Hardware JVM
The ultimate in performance is achieved by executing or running the JVM in hardware.
The JVM is implemented in silicon as either a co-processor or separate processor on a
custom chip. Specially designed or custom hardware is required which directly executes
the Java bytecodes. This is similar to assembly code being executed on a particular
processor. Several chip vendors including ARM from England, Ajile from the United
States, Vulcan Machines LTD from England and NTT Docomo from Japan offer
hardware JVMs. [2]

Several variations of the hardware theme are currently available. Some hardware
implementations use a co-processor to execute Java bytecodes. Other implementations
use specialized hardware, which is called when Java bytecodes are detected. An example
of a hardware JVM is the ARM® Jazelle™[3].

3.3.1 ARM® Jazelle™
Jazelle is a product from ARM®, which includes a hardware JVM for the ARM®
family of processors and a runtime environment to support Java applications. The
Jazelle runtime architecture, as shown in Figure 4, allows Java applications to access
the Java Class libraries available in the particular Java development kit, either the Java 2
Enterprise, Standard or Micro Edition. Each edition of Java has a virtual machine which
executes the Java bytecodes. Jazelle currently supports the pJava, KVM and CVM
virtual machines. Jazelle provides a Java Technology Enabling Kit for porting other
VM’s.

The Jazelle Supporting Code replaces the Java virtual machine interpreter loop and
enables execution of the Java bytecodes directly in hardware. A condition bit in a new
ARM instruction puts the processor in the Java state. The processor then executes the
Java byte code directly in hardware. Jazelle supports execution of both Java bytecodes
and ARM® machine codes. This allows existing application written in C and C++ to
continue to execute alongside the Java applications. The main difference between a
software JVM such as Personal JWorks and a hardware JVM such as Jazelle is how
the Java bytecodes are executed. In Personal JWorks, the bytecodes are translated to
native machine code and then executed. With Jazelle, the bytecodes are executed
directly in hardware.

324

Since the JVM must be supported by the underlying RTOS, Jazelle also supports
WindowsCE, SymbianOS, PalmOS, Linux and many real time and proprietary operating
systems.

Figure 4 - Jazelle™ Run-Time Architecture

3.4 Java as a Real Time Operating System
An interesting variation is viewing the JVM as an operating system. The JVM is the
RTOS. Since the JVM is essentially a machine, simulated or executed on another
machine, it makes sense to eliminate the other machine and execute the JVM directly on
hardware. An example of this is Jbed™ from Esmertec [4].

Java Application
Native

ApplicationNetwork Graphics Remote
Methods

Native
Methods

C
la

ss
Lo

ad
er

G
ar

ba
ge

C
ol

le
ct

or

Pr
oc

es
s M

an
ag

er

M
em

or
y

M
an

ag
er

Jazelle™ Support Code

Native
Operating

System

Jazelle™ Enabled ARM®
P

Class
Libraries

Java
VM

Ve
rif

ie
r

325

3.4.1 Esmertec ™
Jbed combines the JVM and a real time operating system into a single entity. Jbed
has a four layer architecture. The Java applications have access to lang, io, util as well as
the connection framework in the javax.microedition package and is PersonalJava 3.0
(JDK 1.1) compliant. As shown in Figure 5, Jbed supports many of the popular

Figure 5 - Jbed™ Run-Time Architecture

Internet protocols such as HTTP, TFTP, TCP/IP, PPP and UDP. JVM services such as
garbage collection (GC) are supported without the intermediary JVM. Jbed does not
execute or interpret Java bytecode. Instead, bytecode is translated into fast machine code
prior to downloading or upon class loading with the Way Ahead of Time compiler and
the Target Bytecode Compiler (TBCC). This avoids the speed and size penalty of a
JVM, yet stills provides advanced Java features such as dynamic code loading and
automatic garbage collection. Jbed extends the Java thread package to provide priority
based scheduling using the earliest deadline first algorithm. A device driver support
package supports driver development in Java. Thus, the entire application including
device drivers can be written in Java.

4 On the Road to Java
The 9840 and 9940 family of StorageTek tape drives use an ARM7® 32 bit processor,
with 2-4MB of RAM for loading the code image. A 32MB - 64MB data buffer is used for
data transfer and the drives support the SCSI, ESCON, and Fibre Channel interfaces.
Specialized Application Specific Integrated Circuits (ASICs) are used to control the tape
drive. All of the code is written in C with Vertex serving as the RTOS.

com.jbed.* java.* javac.* javax.microedition.*

Java Applications

Http
Protocol

Tftp
Protocol TBCC GC Log Debug

Agent......

Net Drivers I/O DriversKernel/Run-time

Network
Device

Base
Hardware

I/O
Device

326

C++ and object design have been introduced into the time critical tape microcode.
Initially, the classes have been written in C++ and are mirrored in Java for unit testing.
The Java classes form the basis for a hardware simulator.

Since FastJ™ is similar to current development environment, FastJ™ will be the first
step to introducing Java in our real time system. It is the least disruptive and does not
require hardware changes. FastJ will be used to compile the Java classes used in the
hardware simulator and tape microcode. Since the current RTOS is old, the next step will
be to investigate Jbed™ which is a Java RTOS, a combination of hardware/software.
Finally, since Jazelle™ requires hardware changes, the last step will be Jazelle™.

5 Summary
Recently, there has been a resurgence in the use of Java for embedded systems. Options
ranging from software Java Virtual Machines offered by real time operating system
vendors to chip vendors developing Java chips are available to the embedded storage
developer. Java will be used in the next generation Personal Digital Assistants (PDA),
such as the Palm Pilot, and in the next generation of mobile phones.

We believe that Java has now become a viable option for building real-time storage
applications. Issues involving the space, performance and scheduling problems of Java
for embedded systems are being solved. Almost daily, a new vendor or company
announces its plan for Java in the embedded environment. With the many options
available, at least one flavor of embedded Java will work for your application.

6 References
[1] WindRiver web site - http://www.windriver.com

[2] EE Times, January 29,2001, “Java Vendors set to skirmish over cellular”, page 1

[3] EE Times, October 16, 2001, “ARM tweaks CPU schemes to run Java”, page 20

[4] JavaPro, February, 2002, “A Comfortable Jbed”, page 72

327

DIR-2000, 1 Gbit/sec Data Recorder for VERA Project
Tony Sasanuma, Ph.D.

Sony Broadband Solutions Network Company
4-14-1 Asahi-cho, Atsugi-shi,
Kanagawa, 243-0014 Japan

Tony.Sasanuma@jp.sony.com
Tel: +81-46-230-5364
Fax: +81-46-230-6075

Abstract
This paper will discuss the new technologies used in the DIR-2000, 1 Gbit/sec data
recorder: the highest performance in the commercial market. It will briefly explain how
the DIR-2000 is implemented in VERA Program [1] of National Astronomical
Observatory in Japan.

1 Introduction
More than 1000 units of Sony DIR-1000 Series [2] data recorders are being used for the
varieties of applications among government and scientific communities worldwide.
Responding to the request of a higher data rate than 512 Mbit/sec, Sony developed the
DIR-2000 that offers the highest data rate of 1 Gbit/sec. The data capacity on 19mm
metal particle tape is 600 GB and the recording time per cassette tape is 80 minutes at the
data rate of 1 Gbit/sec.

2 New Format
Since 1990, ANSI ID-1 19 mm Format has been well accepted as the high performance
and reliable format by variety of data recorder communities, and there are many ID-1
users worldwide. However, the data capacity per tape of 100 GB for ID-1 is not enough
for a 1 Gbit/sec recorder, since the recording time would be only 13 minutes.

Sony is preparing to propose a new 19 mm format in ANSI Committee for
standardization. The new format of 19 mm is not only suitable for data recording of
high performance and high reliability demanded in 21st century, but also for read
compatibility of ID-1 tape and similar interface and control on ID-1 drives. The
specifications and parameters of the DIR-2000/new format are shown in terms of the
comparison with the DIR-1000H / ID-1 Format in Table 1.

The dimensions of the DIR-2000 are the same as those of the DIR-1000 Series, so that
they can be installed in the existing Sony’ Mass Storage System such as PetaSite
DMS-8800 and the DMS-24.

328

 DIR-1000H DIR-2000
Format ANSI ID-1 Format New Format.
___ID-1 Read Compatible
Data Rates 512, 400, 256 Mbit/sec 1024, 512, 256 Mbit/sec
Data Capacity/Tape 100 GBytes 600 GBytes
Recording Time 25 minutes at 512 Mbps 80 minutes at 1024 Mbps

Media Co-oxide New Metal Particle
Tape Width 19 mm 19 mm
Tape Thickness 16 μm 11 μm
Coercive Force (Hc) 900 Oe 2300 Oe

Shortest wavelength 0.89 μm 0.45 μm
Track Pitch 45 μm 19 μm
Maximum Tape Speed 847.5 mm/sec 356.6 mm/sec
Recording Bit Rate/Head 88 Mbps 88 Mbps
Record / Playback Heads 16 heads/16 heads 32 heads/32 heads
Processor Channels 8 channels 16 channels
Maximum Writing Speed 39.5 meter/sec 19.7 meter/sec
Scanner Rotation Speed 110 rps at 512 Mbps 55 rps at 1024 Mbps
Data Interface ECL Parallel with clock
Control Interface RS-422/IEEE-488GPIB/RS-232C
Dimensions (W x H x D) 436 x 432.5 x 633.5 mm
 (17 1/4 x 17 1/8 x 25 1/8 inches)
Weight 64 Kg (141 lb 1 oz) 70 Kg (154 lb 5 oz)
Power Requirement 100 V to 240 V AC ±10% (50/60 Hz)
Power Consumption 800 VA 850 VA

 Table 1. Specifications and Parameters

3 New Technologies
In order to meet the requirements of high data rate, high data capacity, long head life,
less tape damage, and backward compatibility all together, new heads and new tapes
were developed and implemented in new recorders.

3-1 Ferrite Cover over Heads and ETF Record Heads
There are 32 record heads and 32 playback heads: the total of 64 heads on the scanner of
the DIR-2000! Since the spacing between a record head and playback head is small, the
cross feed signal from record heads to playback heads would be significant during
read-after-write that is an essential function for reliable data recording.

We introduced patented ferrite covers over record and playback heads to shield the
magnetic flux. This simple idea of shielding is very effective and improves the cross
feed by 12 dB.

329

The newly developed the ETF (Embedded Thin Film) head has small magnetic core
compare with the conventional MIG (Metal In Gap) head, so that the magnetic leakage
flux from record head is improved further by 7 dB.

3-2 Laminated Amorphous Playback Heads and New Metal Tape
The shortest wavelength becomes one half of ID-1 (0.45μm vs. 0.89μm), and the track
pitch becomes less than one half of ID-1 (19μm vs. 45μm). In spite of these
reductions, the combination of the laminated amorphous playback heads and newly
developed metal particle tape provide even better C/N than ID-1 recorder. This could
be achieved by the joint R & D of heads/drums, drives, and media in Sony.

3-3 Trench Design Heads
There are two trenches on record and playback heads of the DIR-2000. This patented
head design provides better head-tape contact with lower head projection, larger head
contour, and lower tape tension. These result in longer head life and less tape damage.
Backward compatibility of format requires playback of tapes of different thickness.
Trench design heads provide a good head-tape contact for different kinds of tape
thickness throughout head life.

The same technologies of trench ETF/amorphous heads and new metal tapes are used in
Sony Computer Tape Drive DTF-2 (24 Mbytes/sec via SCSI or Fiber Channel) that are
installed as a few hundred TB Systems at NASDA and ERSDAC in Japan.

4 Applications
The first application for the DIR-2000 was VERA Project of National Astronomical
Observatory in Japan. VERA stands for VLBI (Very Long Baseline Interferometer)
Exploration of Ratio Astronomy. VERA array consists of four telescopes whose
diameter is 20 meters (67 feet). The combination of these telescopes can obtain the
resolution power of a telescope whose diameter is 2000km (1250 miles).

The DIR-2000 1 Gbit/sec recorder is one of the key devices for VERA Project. One
DIR-2000 drive is used to record the data at each of four VERA telescope stations. The
correlator at National Astronomical Observatory in Tokyo supports four tape drives of
the DIR-2000 to analyze the data from four telescope stations.

The DIR-2000’s are installed in the DMS-24, Mass Storage System for automated
operations for data acquisition at the telescope stations and correlation in Tokyo. The
DMS-24 library can handle up to 24 large cassette tapes (14.4 TB capacity) and two
drives of the DIR-2000’s.

Besides VERA Project, a government agency in Japan plans to develop 2.5 Gbit/sec
ATM network, and is considering using the DIR-2000 to record the data on the
broadband network. Broadband network is one of the important technologies in 21st
century, and recording of high-speed un-interrupted data will be needed.

330

5 Conclusions
Sony has developed the DIR-2000: 1 Gbit/sec data recorder with 600 GB data capacity
per tape. The DIR-2000 meets the requirement for recording of un-interrupting data at
very high data rate. The applications for this recorder are not only scientific researches
but also broadband radar and network.

The DIR-2000 will be demonstrated at Vendor Exhibit Area.

References
[1] M. Homma, et al. “Science with VERA: VLBI Exploration of Radio Astrometry”
SPIE Proceeding No. 4015, 2000
[2] T. Sasanuma. “New 512 Mbit/sec ID-1 Recorder” THIC Conference October 15th,
1996

Adam, Nabil R - Efficient Storage and Management of Environmental Information 165
Atluri, Vijayalakshmi - Efficient Storage and Management of Environmental Information 165
Azagury, Alain - Point-in-Time Copy: Yesterday, Today and Tomorrow 259

Banachowski, Scott A - Intra-file Security for a Distributed File System..................................... 153
Bhide, Anupam - File Virtualization with DirectNFS ... 43
Borzuchowski, Janet - Java and Real Time Storage Applications ... 317
Brandt, Scott A - Intra-file Security for a Distributed File System ... 153
Burns, Randal - Experimentally Evaluating in-place Delta Reconstruction 137
Butler, Michelle L. - Storage Issues at NCSA: How to get file systems going wide and fast

within and out of large scale Linux cluster systems .. 93

Calvo, Sherri - Conceptual Study of Intelligent Data Archives of the Future 75
Chang, Tai-Sheng - Efficient RAID Disk Scheduling on Smart Disks ... 121

Debiez, Jacques - High Performance RAIT .. 65
Dee, Richard H - The Challenges of Magnetic Recording on Tape for Data Storage

(The One Terabyte Cartridge and Beyond) ... 109
Du, David H C - Efficient RAID Disk Scheduling on Smart Disks .. 121

Engineer, Anu - File Virtualization with DirectNFS ... 43

Factor, Michael E - Point-in-Time Copy: Yesterday, Today and Tomorrow.................................. 259
Fitzgerald, Keith - Storage Area Networks and the High Performance Storage System 225

Graf, Otis - Storage Area Networks and the High Performance Storage System 225
Gu, Junmin - Storage Resource Managers: Middleware Components for Grid Storage............... 209

Hanai, Kazuko - The storage stability of metal particle media : Chemical analysis and kinetics
of lubricant and binder hydrolysis ... 311

Harberts, Robert - Conceptual Study of Intelligent Data Archives of the Future 75
Hersch, Roger D - Indexing and selection of data items in huge data sets by constructing and

accessing tag collections .. 181
Hughes, James - High Performance RAIT .. 65
Hulen, Harry - Storage Area Networks and the High Performance Storage System 225

Kakuishi, Yutaka - The storage stability of metal particle media : Chemical analysis and kinetics of
lubricant and binder hydrolysis ... 311

Kanetkar, Anshuman - File Virtualization with DirectNFS ... 43
Karamanolis, Christos - File Virtualization with DirectNFS... 43
Karamanolis, Christos - Locating Logical Volumes in Large-Scale Networks 271
Karlsson, Magnus - Locating Logical Volumes in Large-Scale Networks 271
Kempler, Steve - Conceptual Study of Intelligent Data Archives of the Future 75
Khizroev, Sakhrat - Perpendicular Recording: A Future Technology or a Temporary Solution 1

Index of Authors

331

Khoo, Patrick Beng T - Introducing A Flexible Data Transport Protocol for Network Storage
Applications ... 241

Kiang, Richard - Conceptual Study of Intelligent Data Archives of the Future 75
Kini, Aditya - File Virtualization with DirectNFS... 43

Li, Jiangtao - Data Placement for Tertiary Storage ... 193
Litvinov, Dmitri -Perpendicular Recording: A Future Technology or a Temporary Solution 1
Long, Darrel D E - Experimentally Evaluating in-place Delta Reconstruction 137
Lynnes, Chris - Conceptual Study of Intelligent Data Archives of the Future 75

Mahalingam, Mallik - Locating Logical Volumes in Large-Scale Networks 271
Markov, Vladimir B. - High-density holographic data storage with random encoded

reference beam... 291
McConaughy, Gail - Conceptual Study of Intelligent Data Archives of the Future 75
McDonald, Ken - Conceptual Study of Intelligent Data Archives of the Future 75
Meth, Kalman Z - iSCSI Initiator Design and Implementation Experience 297
Micka, William - Point-in-Time Copy: Yesterday, Today and Tomorrow 259
Miller, Ethan L - Intra-file Security for a Distributed File System ... 153
Milligan, Charles - High Performance RAIT .. 65
Mueller, Gary - Java and Real Time Storage Applications .. 317
Muntz, Dan - Building a Single Distributed File System from Many NFS Server -or-

The Poor-Man’s Cluster Server ... 60
Muntz, Dan - File Virtualization with DirectNFS ... 43

Peterson, Zachary N J - Intra-file Security for a Distributed File System 53
Prabhakar, Sunil - Data Placement for Tertiary Storage .. 193
Ponce, Sebastien - Indexing and selection of data items in huge data sets by constructing and

accessing tag collections .. 181

Ramapriyan, H. K - Conceptual Study of Intelligent Data Archives of the Future 75
Roelofs, Larry - Conceptual Study of Intelligent Data Archives of the Future 75
Ruwart, Thomas M - OSD: A Tutorial on Object Storage Devices ... 21

Sarkar, Prasenjit - IP Storage: The Challenge Ahead .. 35
Sasanuma, Tony - DIR-2000, 1 Gbit/sec Data Recorder for VERA Project 327
Satran, Julian - Point-in-Time Copy: Yesterday, Today and Tomorrow .. 259
Shi, Jing - Efficiently Scheduling Tape-resident Jobs ... 305
Shoshani, Arie - Storage Resource Managers: Middleware Components for Grid Storage 209
Sim, Alex - Storage Resource Managers: Middleware Components for Grid Storage 209
Stockmeyer, Larry - Experimentally Evaluating in-place Delta Reconstruction 137
Sun, Donglian - Conceptual Study of Intelligent Data Archives of the Future 75

Thunquest, Gary - File Virtualization with DirectNFS.. 43

Vila, Pere Mato - Indexing and selection of data items in huge data sets by constructing and
accessing tag collections .. 181

Voruganti, Kaladhar - IP Storage: The Challenge Ahead .. 35

332

Wang, Wilson Yong H. - Introducing A Flexible Data Transport Protocol for Network
Storage Applications .. 241

Watson, Richard W - Storage Area Networks and the High Performance Storage System 225

Xing, Chunxiao - Efficiently Scheduling Tape-resident Jobs .. 305
Xu, Zhichen - Locating Logical Volumes in Large-Scale Networks ... 271

Yesha, Yelena - Efficient Storage and Management of Environmental Information 165
Yu, Songmei - Efficient Storage and Management of Environmental Information 165

Zhang, Zheng - File Virtualization with DirectNFS .. 43
Zhou, Lizhu - Efficiently Scheduling Tape-resident Jobs ... 305

333

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

Form Approved

OMB No. 0704-0188

3. REPORT TYPE AND DATES COVERED2. REPORT DATE

5. FUNDING NUMBERS

8. PEFORMING ORGANIZATION
 REPORT NUMBER

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

12b. DISTRIBUTION CODE

18. SECURITY CLASSIFICATION
 OF THIS PAGE

19. SECURITY CLASSIFICATION
 OF ABSTRACT

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39.18
298-102

NSN 7540-01-280-5500

Unclassified Unclassified Unclassified

Unclassified–Unlimited
Subject Category: 82
Report available from the NASA Center for AeroSpace Information,
7121 Standard Drive, Hanover, MD 21076-1320. (301) 621-0390.

REPORT DOCUMENTATION PAGE

UL

20. LIMITATION OF ABSTRACT

16. PRICE CODE

15. NUMBER OF PAGES14. SUBJECT TERMS

National Aeronautics and Space Administration
Washington, DC 20546-0001

Goddard Space Flight Center
Greenbelt, Maryland 20771

17. SECURITY CLASSIFICATION
 OF REPORT

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS (ES)

12a. DISTRIBUTION / AVAILABILITY STATEMENT

13. ABSTRACT (Maximum 200 words)

4. TITLE AND SUBTITLE

1. AGENCY USE ONLY (Leave blank)

6. AUTHOR(S)

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS (ES)

11. SUPPLEMENTARY NOTES

April 2002 Conference Publication

Tenth Goddard Conference on Mass Storage Systems and Technologies
in cooperation with the Nineteenth IEEE Symposium on Mass Storage 423
Systems

Benjamin Kobler and P C Hariharan, Editors

2002-01501-1

CP—2002–210000

P C Hariharan, Systems Engineering and Security, Inc., Greenbelt, Maryland

Magnetic tape, magnetic disk, optical data storage, mass storage, archive storage, file storage
management system, hierarchical storage management software, data backup, network
attached storage, archive performance, media life expectancy, archive scalability, tertiary
storage, data warehousing, holographic storage.

333

This volume collects together 27 papers from the Tenth Goddard Conference on Mass Storage Systems
and Technologies being held in cooperation with the Nineteenth IEEE Symposium on Mass Storage
Systems and Technologies.

